Skip to main content
Log in

The magic of networks grown by redirection

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We highlight intriguing features of complex networks that are grown by redirection. In this mechanism, a target node is chosen uniformly at random from the pre-existing network nodes and the new node attaches either to this initial target or to a neighbor of this target. This exceedingly simple algorithm generates preferential attachment networks in an algorithmic time that is linear in the number of network nodes N. Even though preferential attachment ostensibly requires global knowledge of the network, redirection requires only local knowledge. We also show that changing just a single attachment rate in linear preferential attachment leads to a non-universal degree distribution. Finally, we present unexpected consequences of redirection in networks with undirected links, where highly modular and non-sparse networks arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M O Jackson and B W Rogers Am. Econ. Rev. 97 890 (2007) https://doi.org/10.1257/aer.97.3.890

    Article  Google Scholar 

  2. A L Traud, P J Mucha and M A Porter Phys. A 391 4165 (2012) https://doi.org/10.1016/j.physa.2011.12.021

    Article  Google Scholar 

  3. R Otter Ann. Math. 49 583 (1948) https://doi.org/10.2307/1969046

    Article  MathSciNet  Google Scholar 

  4. J M Kleinberg, S R Kumar, P Raghavan, S Rajagopalan and A Tomkins The Web as a Graph: Measurements, Models and Methods, in Computing and Combinatorics. COCOON 1999. Lecture Notes in Computer Science 1627 (eds.) T Asano, H Imai, D T Lee, S Nakano and T Tokuyama (Berlin: Springer) p 1–18 https://doi.org/10.1007/3-540-48686-0_1

  5. P L Krapivsky and S Redner Phys. Rev. E 63 066123 (2001) https://doi.org/10.1103/PhysRevE.63.066123

    Article  ADS  Google Scholar 

  6. A Vázquez Phys. Rev. E 67 056104 (2003) https://doi.org/10.1103/PhysRevE.67.056104

    Article  ADS  Google Scholar 

  7. C Aldridge Scale-free networks using local information for preferential linking, in MODSIM 2005 International Congress on Modelling and Simulation, (Citeseer: Modelling and Simulation Society of Australia and New Zealand) p 1196–1202 (2005)

  8. G Even, R Levi, M Medina and A Rosén A local algorithm for generating preferential attachment graphs, Unpublished manuscript (2015)

  9. G Bianconi, R K Darst, J Iacovacci and S Fortunato Phys. Rev. E 90 042806 (2014) https://doi.org/10.1103/PhysRevE.90.042806

    Article  ADS  Google Scholar 

  10. G U Yule Phil. Trans. R. Soc. Ser. B 213 21 (19250) https://doi.org/10.1098/rstb.1925.0002

    Article  ADS  Google Scholar 

  11. H A Simon Biometrika 42 425 (1955)

    Article  MathSciNet  Google Scholar 

  12. A-L Barabási and R Albert Science 286 509 (1999) https://doi.org/10.1126/science.286.5439.509

    Article  MathSciNet  ADS  Google Scholar 

  13. P L Krapivsky, S Redner and F Leyvraz Phys. Rev. Lett. 85 4629 (2000) https://doi.org/10.1103/PhysRevLett.85.4629

    Article  ADS  Google Scholar 

  14. S N Dorogovtsev, J F F Mendes and A N Samukhin Phys. Rev. Lett. 85 4633 (2000) https://doi.org/10.1103/PhysRevLett.85.4633

    Article  ADS  Google Scholar 

  15. A-L Barabási and R Albert Rev. Mod. Phys. 74 47 (2002) https://doi.org/10.1103/RevModPhys.74.47

    Article  MathSciNet  ADS  Google Scholar 

  16. S N Dorogovtsev and J F F Mendes Adv. Phys. 51 1079 (2002) https://doi.org/10.1080/00018730110112519

    Article  ADS  Google Scholar 

  17. S Boccaletti, V Latora, Y Moreno, M Chavez and D-U Hwang Phys. Rep. 424 175 (2006) https://doi.org/10.1016/j.physrep.2005.10.009

    Article  MathSciNet  ADS  Google Scholar 

  18. A Barrat, M Barthelemy and A Vespignani Dynamical Processes on Complex Networks (Cambridge: Cambridge University Press, 2008)

  19. M Newman Networks: An Introduction (New York: Oxford University Press) (2010) https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

  20. J Kunegis, M Blattner and C Moser Preferential Attachment in Online Networks: Measurement and Explanations WebSci ’13: Proceedings of the 5th Annual ACM Web Science Conference ACM, New York (2013) https://doi.org/10.1145/2464464.2464514

  21. R Lambiotte, P L Krapivsky, U Bhat and S Redner Phys. Rev. Lett. 117 218301 (2016) https://doi.org/10.1103/PhysRevLett.117.218301

    Article  ADS  Google Scholar 

  22. U Bhat, P L Krapivsky, R Lambiotte and S Redner Phys. Rev. E 94 062302 (2016) https://doi.org/10.1103/PhysRevE.94.062302

    Article  ADS  Google Scholar 

  23. K A Burghardt, Z He, A G Percus and K Lerman Commun. Phys. 4 189 (2021) https://doi.org/10.1038/s42005-021-00693-2

    Article  Google Scholar 

  24. P L Krapivsky and S Redner J. Phys. A 35 9517 (2002) https://doi.org/10.1088/0305-4470/35/45/302

    Article  MathSciNet  ADS  Google Scholar 

  25. P L Krapivsky, S Redner and E Ben-Naim A Kinetic View of Statistical Physics (Cambridge: Cambridge University Press) (2010) https://doi.org/10.1017/CBO9780511780516

  26. R L Graham, D E Knuth and O Patashnik Concrete Mathematics: A Foundation for Computer Science Addison-Wesley (Massachusetts: Reading) (1994)

    Google Scholar 

  27. N Hodas, F Kooti and K Lerman Friendship paradox redux: Your friends are more interesting than you Proceedings of the International AAAI Conference on Web and Social Media 7 225 (2013) https://doi.org/10.1609/icwsm.v7i1.14440

  28. Y-H Eom and H-H Jo Sci. Rep. 4 4603 (2014) https://doi.org/10.1038/srep04603

    Article  Google Scholar 

  29. E Ben-Naim and P L Krapivsky J. Stat. Mech. 2010 P06004 (2010) https://doi.org/10.1088/1742-5468/2010/06/p06004

    Article  Google Scholar 

  30. P L Krapivsky and S Redner Phys. Rev. E 71 036118 (2005) https://doi.org/10.1103/PhysRevE.71.036118

    Article  ADS  Google Scholar 

  31. P L Krapivsky Random recursive hypergraphs J. Phys. A 56 195001 (2023) https://doi.org/10.1088/1751-8121/accac0

    Article  ADS  Google Scholar 

  32. A Gabel and S Redner Sublinear but never superlinear preferential attachment by local network growth J. Stat. Mech. 2013 P02043 (2013) https://doi.org/10.1088/1742-5468/2013/02/P02043

    Article  Google Scholar 

  33. A Gabel, P L Krapivsky and S Redner J. Stat. Mech. 2014 P04009 (2014) https://doi.org/10.1088/1742-5468/2014/04/p04009

    Article  Google Scholar 

  34. R Diestel Graph Theory (Heidelberg: Springer) (2017). https://doi.org/10.1007/978-3-662-53622-3

  35. M Drmota Random Trees (Vienna: Springer) (2009). https://doi.org/10.1007/978-3-211-75357-6

  36. A Frieze and M Karoński Introduction to Random Graphs (Cambridge: Cambridge University Press) (2016) https://doi.org/10.1017/CBO9781316339831

  37. P L Krapivsky and S Redner J. Stat. Mech. 2017 073405 (2017) https://doi.org/10.1088/1742-5468/aa7a3f

    Article  Google Scholar 

  38. W Levens, A Szorkovszky and D J T Sumpter R. Soc. Open Sci. 9 221200 (2022) https://doi.org/10.1098/rsos.221200

    Article  ADS  Google Scholar 

  39. P Erdős and A Rényi Publ. Math. Inst. Hung. Acad. Sci. 5 17 (1960)

    Google Scholar 

  40. P J Flory J. Am. Chem. Soc. 61 1518 (1939) https://doi.org/10.1021/ja01875a053

    Article  Google Scholar 

  41. P J Flory J. Am. Chem. Soc. 63 3083 (1941) https://doi.org/10.1021/ja01856a061

    Article  Google Scholar 

  42. W H Stockmayer J. Chem. Phys. 11 45 (1943) https://doi.org/10.1063/1.1723803

    Article  ADS  Google Scholar 

  43. S Janson, D E Knuth, T Luczak and B Pittel Random Struct. Algorithms 4 233 (1993) https://doi.org/10.1002/rsa.3240040303

    Article  Google Scholar 

  44. E Ben-Naim and P L Krapivsky Europhys. Lett. 97 48003 (2012) https://doi.org/10.1209/0295-5075/97/48003

    Article  ADS  Google Scholar 

  45. S Janson and L Warnke Ann. Appl. Probab. 31, 1523 (2021)

    Article  MathSciNet  Google Scholar 

  46. P L Krapivsky, G J Rodgers and S Redner Phys. Rev. Lett. 86 5401 (2001) https://doi.org/10.1103/PhysRevLett.86.5401

    Article  ADS  Google Scholar 

  47. D S Callaway, J E Hopcroft, J M Kleinberg, M E J Newman and S H Strogatz Phys. Rev. E 64 041902 (2001) https://doi.org/10.1103/PhysRevE.64.041902

    Article  ADS  Google Scholar 

  48. P L Krapivsky, G J Rodgers and S Redner Phys. Rev. Lett. 86 5401 (2001) https://doi.org/10.1103/PhysRevLett.86.5401

    Article  ADS  Google Scholar 

  49. S N Dorogovtsev, J F F Mendes and A N Samukhin Phys. Rev. E 64 066110 (2001) https://doi.org/10.1103/PhysRevE.64.066110

    Article  ADS  Google Scholar 

  50. J Kim, P L Krapivsky, B Kahng and S Redner Phys. Rev. E 66 055101 (2002) https://doi.org/10.1103/PhysRevE.66.055101

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Redner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krapivsky, P.L., Redner, S. The magic of networks grown by redirection. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-02874-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-02874-x

Keywords

Navigation