Skip to main content
Log in

Fabrication of Biomimetic Surface for Hydrophobic and Anti-icing Purposes via the Capillary Force Lithography

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this paper, inspired by lotus leaf surfaces, we fabricated biomimetic multi-scale micro-nano-structures by Two-Step Capillary Force Lithography (TS-CFL) and UV-assisted Capillary Force Lithography (UV-CFL). The experimental results indicated that TS-CFL was unfitted to fabricate large-area multi-scale micro-nano-structures. Conversely, UV-CFL can fabricate large-area multi-scale micro-nano-structures. We discussed the hydrophobic and anti-icing properties of the biomimetic surfaces fabricated by these two technologies. We found that small structures are significant for improving the hydrophobic anti-icing properties of single-structured or structureless surfaces. We believe that these results can complement the experimental details of both technologies and enable the development of more interesting micro-nano-structures biomimetic surfaces by both technologies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data underlying this article are available in the article.

References

  1. Zorba, V., Stratakis, E., Barberoglou, M., Spanakis, E., Tzanetakis, P., Anastasiadis, S. H., & Fotakis, C. (2008). Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Advanced Materials, 20, 4049–4054. https://doi.org/10.1002/adma.200800651

    Article  CAS  Google Scholar 

  2. Gao, T., Liu, F., Yang, D., Yu, Y., Wang, Z., & Li, G. (2015). Assembly of selective biomimetic surface on an electrode surface: A design of nano-bio interface for biosensing. Analytical Chemistry, 87, 5683–5689. https://doi.org/10.1021/acs.analchem.5b00816

    Article  CAS  PubMed  Google Scholar 

  3. Kim, W., Lee, W., Park, H., Park, J., Kim, W., Kang, B., Choi, E., Kim, C.-S., Park, J.-O., Lee, G., Bang, D., & Park, J. (2022). Biomimetic nano-pine-pollen structure-based surface-enhanced raman spectroscopy sensing platform for the hypersensitive detection of toxicants: Cadmium and amyloid. ACS Sustainable Chemistry & Engineering, 10, 3180–3190. https://doi.org/10.1021/acssuschemeng.1c07117

    Article  CAS  Google Scholar 

  4. Legrand, Q., Benayoun, S., & Valette, S. (2021). Biomimetic approach for the elaboration of highly hydrophobic surfaces: Study of the links between morphology and wettability. Biomimetics. https://doi.org/10.3390/biomimetics6020038

    Article  PubMed  PubMed Central  Google Scholar 

  5. He, X., Li, G., Zhang, Y., Lai, X., Zhou, M., Xiao, L., Tang, X., Hu, Y., Liu, H., Yang, Y., Cai, Y., Guo, L., Liu, S., & Zhao, W. (2021). Bioinspired functional glass integrated with multiplex repellency ability from laser-patterned hexagonal texturing. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2021.129113

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kang, S. M., You, I., Cho, W. K., Shon, H. K., Lee, T. G., Choi, I. S., Karp, J. M., & Lee, H. (2010). One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angewandte Chemie-International Edition, 49, 9401–9404. https://doi.org/10.1002/anie.201004693

    Article  CAS  PubMed  Google Scholar 

  7. Peng, L., Zhang, C., Wu, H., Yi, P., Lai, X., & Ni, J. (2016). Continuous fabrication of multiscale compound eyes arrays with antireflection and hydrophobic properties. IEEE Transactions on Nanotechnology, 15, 971–976. https://doi.org/10.1109/tnano.2016.2618005

    Article  ADS  CAS  Google Scholar 

  8. Gao, X., & Guo, Z. (2017). Biomimetic superhydrophobic surfaces with transition metals and their oxides: A review. Journal of Bionic Engineering, 14, 401–439. https://doi.org/10.1016/s1672-6529(16)60408-0

    Article  Google Scholar 

  9. Long, J., He, Z., Zhou, P., Xie, X., Zhou, C., Hong, W., & Hu, W. (2018). Low-cost fabrication of large-area broccoli-like multiscale micro- and nanostructures for metallic super-hydrophobic surfaces with ultralow water adhesion and superior anti-frost ability. Advanced Materials Interfaces. https://doi.org/10.1002/admi.201800353

    Article  Google Scholar 

  10. Yang, Y., Li, X., Zheng, X., Chen, Z., Zhou, Q., & Chen, Y. (2018). 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Advanced Materials. https://doi.org/10.1002/adma.201704912

    Article  PubMed  Google Scholar 

  11. Jafari, R., Cloutier, C., Allahdini, A., & Momen, G. (2019). Recent progress and challenges with 3D printing of patterned hydrophobic and superhydrophobic surfaces. The International Journal of Advanced Manufacturing Technology, 103, 1225–1238. https://doi.org/10.1007/s00170-019-03630-4

    Article  Google Scholar 

  12. Zhao, W., Xiao, L., He, X., Cui, Z., Fang, J., Zhang, C., Li, X., Li, G., Zhong, L., & Zhang, Y. (2021). Moth-eye-inspired texturing surfaces enabled self-cleaning aluminum to achieve photothermal anti-icing. Optics & Laser Technology. https://doi.org/10.1016/j.optlastec.2021.107115

    Article  Google Scholar 

  13. Guo, Y., Zhang, Z., & Zhang, S. (2019). Advances in the application of biomimetic surface engineering in the oil and gas industry. Friction, 7, 289–306. https://doi.org/10.1007/s40544-019-0292-4

    Article  Google Scholar 

  14. Chen, L., Duan, Y., Cui, M., Huang, R., Su, R., Qi, W., & He, Z. (2021). Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. Science of the Total Environment, 766, 144469. https://doi.org/10.1016/j.scitotenv.2020.144469

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Xia, Y., & Whitesides, G. M. (1998). Soft lithography. Annual review of materials science, 28, 153–184.

    Article  ADS  CAS  Google Scholar 

  16. Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1996). Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 14, 4129–4133.

    Article  ADS  CAS  Google Scholar 

  17. Suh, K. Y., Kim, Y. S., & Lee, H. H. (2001). Capillary force lithography. Advanced Materials, 13, 1386–1389.

    Article  CAS  Google Scholar 

  18. Choi, J. S., Tsui, J. H., Xu, F., Lee, S. H., Lee, H. J., Wang, C., Kim, H. J., & Kim, D. H. (2021). Fabrication of nanomolded Nafion thin films with tunable mechanical and electrical properties using thermal evaporation-induced capillary force lithography. Advanced Materials Interfaces. https://doi.org/10.1002/admi.202002005

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xing, W., Zhang, D., Zhang, L., Zhang, S., Huang, Y., Li, J., Guo, A., Li, W., & Zhao, F. (2021). Stamping of a replica with resolution doubling that of the master via capillary force lithography. Optical Materials, 120, 111467.

    Article  CAS  Google Scholar 

  20. Cheng, K., Huang, Z., Wang, P., Sun, L., Ghasemi, H., Ardebili, H., & Karim, A. (2023). Antibacterial flexible triboelectric nanogenerator via capillary force lithography. Journal of Colloid and Interface Science, 630, 611–622.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, H., Seo, H., Kim, S. K., & Bae, I. (2022). Aligned proton transport highway of hierarchically structured proton-exchange membranes constructed via capillary force lithography. ACS Applied Energy Materials, 5, 6256–6264.

    Article  CAS  Google Scholar 

  22. Jeong, H. E., Kwak, R., Kim, J. K., & Suh, K. Y. (2008). Generation and self-replication of monolithic, dual-scale polymer structures by two-step capillary-force lithography. Small (Weinheim an der Bergstrasse, Germany), 4, 1913–1918. https://doi.org/10.1002/smll.200800151

    Article  CAS  PubMed  Google Scholar 

  23. Khang, D. Y., & Lee, H. H. (2004). Pressure-assisted capillary force lithography. Advanced Materials, 16, 176–179. https://doi.org/10.1002/adma.200305673

    Article  CAS  Google Scholar 

  24. Zhou, T., Ruan, B., Che, J., Li, H., Chen, X., & Jiang, Z. (2021). Gecko-inspired biomimetic surfaces with annular wedge structures fabricated by ultraprecision machining and replica molding. ACS Omega, 6, 6757–6765. https://doi.org/10.1021/acsomega.0c05804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tao, D., Gao, X., Lu, H., Liu, Z., Li, Y., Tong, H., Pesika, N., Meng, Y., & Tian, Y. (2017). Controllable anisotropic dry adhesion in vacuum: Gecko inspired wedged surface fabricated with ultraprecision diamond cutting. Advanced Functional Materials, 27, 1606576.

    Article  Google Scholar 

  26. Bechert, D., Bruse, M., & Hage, W. (2000). Experiments with three-dimensional riblets as an idealized model of shark skin. Experiments in fluids, 28, 403–412.

    Article  ADS  Google Scholar 

  27. Wang, Y., Hu, H., Shao, J., & Ding, Y. (2014). Fabrication of well-defined mushroom-shaped structures for biomimetic dry adhesive by conventional photolithography and molding. ACS Applied Materials & Interfaces, 6, 2213–2218. https://doi.org/10.1021/am4052393

    Article  CAS  Google Scholar 

  28. Tricinci, O., Eason, E. V., Filippeschi, C., Mondini, A., Mazzolai, B., Pugno, N. M., Cutkosky, M. R., Greco, F., & Mattoli, V. (2018). Approximating gecko setae via direct laser lithography. Smart Materials and Structures. https://doi.org/10.1088/1361-665X/aa9e5f

    Article  Google Scholar 

  29. Liu, R., Chi, Z., Cao, L., Weng, Z., Wang, L., Li, L., Saeed, S., Lian, Z., & Wang, Z. (2020). Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment. Applied Surface Science, 534, 147576.

    Article  CAS  Google Scholar 

  30. Yao, M., Zhang, P., Nie, J., & He, Y. (2021). The superhydrophobic fluorine-containing material prepared through biomimetic UV lithography for oil–water separation and anti-bioadhesion. Macromolecular Chemistry and Physics, 222, 2100149.

    Article  CAS  Google Scholar 

  31. Zhan, Y., Zhao, J., Liu, W., Yang, B., Wei, J., & Yu, Y. (2015). Biomimetic submicroarrayed cross-linked liquid crystal polymer films with different wettability via colloidal lithography. ACS applied materials & interfaces, 7, 25522–25528.

    Article  CAS  Google Scholar 

  32. Gu, Y., Zhang, W., Mou, J., Zheng, S., Jiang, L., Sun, Z., & Wang, E. (2017). Research progress of biomimetic superhydrophobic surface characteristics, fabrication, and application. Advances in Mechanical Engineering. https://doi.org/10.1177/1687814017746859

    Article  Google Scholar 

  33. Zhang, L., Chu, X., Tian, F., Xu, Y., & Hu, H. (2022). Bio-inspired hierarchical micro-/nanostructures for anti-icing solely fabricated by metal-assisted chemical etching. Micromachines. https://doi.org/10.3390/mi13071077

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moon, B. S., Kim, S., Kim, H. E., & Jang, T. S. (2017). Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses. Materials Science & Engineering C-Materials for Biological Applications, 73, 90–98. https://doi.org/10.1016/j.msec.2016.12.064

    Article  CAS  Google Scholar 

  35. Hu, H., Siu, V. S., Gifford, S. M., Kim, S., Lu, M., Meyer, P., & Stolovitzky, G. A. (2017). Bio-inspired silicon nanospikes fabricated by metal-assisted chemical etching for antibacterial surfaces. Applied Physics Letters. https://doi.org/10.1063/1.5003817

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stratakis, E., Bonse, J., Heitz, J., Siegel, J., Tsibidis, G. D., Skoulas, E., Papadopoulos, A., Mimidis, A., Joel, A. C., Comanns, P., Krüger, J., Florian, C., Fuentes-Edfuf, Y., Solis, J., & Baumgartner, W. (2020). Laser engineering of biomimetic surfaces. Materials Science and Engineering: R: Reports, 141, 100562. https://doi.org/10.1016/j.mser.2020.100562

    Article  Google Scholar 

  37. Yang, Z., Liu, X., & Tian, Y. (2019). Hybrid laser ablation and chemical modification for fast fabrication of bio-inspired super-hydrophobic surface with excellent self-cleaning, stability and corrosion resistance. Journal of Bionic Engineering, 16, 13–26. https://doi.org/10.1007/s42235-019-0002-y

    Article  Google Scholar 

  38. Ahmmed, K., Grambow, C., & Kietzig, A.-M. (2014). Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines, 5, 1219–1253. https://doi.org/10.3390/mi5041219

    Article  Google Scholar 

  39. Höhm, S., Rosenfeld, A., Krüger, J., & Bonse, J. (2012). Femtosecond laser-induced periodic surface structures on silica. Journal of Applied Physics, 112, 014901. https://doi.org/10.1063/1.4730902

    Article  Google Scholar 

  40. Garcia-Lechuga, M., Haahr-Lillevang, L., Siegel, J., Balling, P., Guizard, S., & Solis, J. (2017). Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses. Physical Review B. https://doi.org/10.1103/PhysRevB.95.214114

    Article  Google Scholar 

  41. Osellame, R., Cerullo, G., & Ramponi, R. (2012). Femtosecond laser micromachining: Photonic and microfluidic devices in transparent materials. Springer.

    Book  Google Scholar 

  42. Baron, C. F., Mimidis, A., Puerto, D., Skoulas, E., Stratakis, E., Solis, J., & Siegel, J. (2018). Biomimetic surface structures in steel fabricated with femtosecond laser pulses: Influence of laser rescanning on morphology and wettability. Beilstein journal of nanotechnology, 9, 2802–2812.

    Article  CAS  Google Scholar 

  43. Bäuerle, D. (2013). Laser processing and chemistry. Springer Science & Business Media.

    Google Scholar 

  44. Ling, E. J. Y., Saïd, J., Brodusch, N., Gauvin, R., Servio, P., & Kietzig, A.-M. (2015). Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium. Applied Surface Science, 353, 512–521.

    Article  ADS  CAS  Google Scholar 

  45. Martínez-Calderon, M., Rodríguez, A., Dias-Ponte, A., Morant-Miñana, M., Gómez-Aranzadi, M., & Olaizola, S. (2016). Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS. Applied Surface Science, 374, 81–89.

    Article  ADS  Google Scholar 

  46. Qin, W., & Yang, J. (2017). Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses. Surface Science, 661, 28–33.

    Article  ADS  CAS  Google Scholar 

  47. Suh, K. Y., & Lee, H. H. (2002). Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting. Advanced Functional Materials, 12, 405–413.

    Article  CAS  Google Scholar 

  48. Charoenchai, M., Prompinit, P., Kangwansupamonkon, W., & Vayachuta, L. (2020). Bio-inspired surface structure for slow-release of urea fertilizer. Journal of Bionic Engineering, 17, 335–344. https://doi.org/10.1007/s42235-020-0027-2

    Article  Google Scholar 

  49. Dong, S., Li, M., Liu, C., Zhang, J., & Chen, G. (2020). Bio-inspired superhydrophobic coating with low hydrate adhesion for hydrate mitigation. Journal of Bionic Engineering, 17, 1019–1028. https://doi.org/10.1007/s42235-020-0085-5

    Article  Google Scholar 

  50. Mattaparthi, S., & Sharma, C. S. (2019). Fabrication of self-cleaning antireflective polymer surfaces by mimicking underside leaf hierarchical surface structures. Journal of Bionic Engineering, 16, 400–409. https://doi.org/10.1007/s42235-019-0032-5

    Article  Google Scholar 

  51. Wang, Z., Li, B., Feng, X., Jiao, Z., Zhang, J., Niu, S., Han, Z., & Ren, L. (2020). Rapid fabrication of bio-inspired antireflection film replicating from cicada wings. Journal of Bionic Engineering, 17, 34–44. https://doi.org/10.1007/s42235-020-0001-z

    Article  Google Scholar 

  52. Sefiane, K. (2010). On the formation of regular patterns from drying droplets and their potential use for bio-medical applications. Journal of Bionic Engineering, 7, S82–S93. https://doi.org/10.1016/s1672-6529(09)60221-3

    Article  Google Scholar 

  53. Xu, M., Du, F., Ganguli, S., Roy, A., & Dai, L. (2016). Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range. Nature Communication, 7, 13450. https://doi.org/10.1038/ncomms13450

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Nos. 61705096, 12274189 and 62075092), Natural Science Foundation of Shandong Province (ZR2021MF121), and Yantai City-University Integration Development Project (2021XDRHXMXK26, 2021XKZY03).

Author information

Authors and Affiliations

Authors

Contributions

WX and YT: conceptualization, methodology, investigation, data curation, visualization, writing—original draft. FZ and LZ: methodology, funding acquisition, supervision. DZ: writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Dengying Zhang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 945 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, W., Tang, Y., Zhao, F. et al. Fabrication of Biomimetic Surface for Hydrophobic and Anti-icing Purposes via the Capillary Force Lithography. J Bionic Eng 21, 74–83 (2024). https://doi.org/10.1007/s42235-023-00451-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00451-w

Keywords

Navigation