Skip to main content
Log in

Exploring hidden-charm and hidden-strange hexaquark states from lattice QCD

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Based on five different ensembles of newly generated (2+1)-flavor configurations with pion mass of approximately mπ≃(140–310) MeV, we present a lattice analysis of hidden-charm and hidden-strange hexaquarks with the quark content \(usc\bar d\bar s\bar c\). The correlation matrices of two types of operators with JPC = 0++, 0−+, 1++ and 1−− are simulated to extract the masses of the hexaquark candidates, which are subsequently extrapolated to the physical pion mass and continuum limit. The results indicate that ground state masses are below the \({\Xi _c}{{\bar \Xi }_c}\) threshold and provide a characteristic signal for the experimental discovery of hexaquark candidates, which may enrich the versatile structure of multiquarks; moreover, it is an indispensable step to decipher the nonperturbative nature of the fundamental interactions of quarks and gluons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kirkkopelto, Performance Philosophy. 1, 4 (2015).

    Article  Google Scholar 

  2. G. Zweig, An SU3 Model for Strong Interaction Symmetry and Its Breaking (1964), CERN-TH-412.

  3. R. J. Jaffe, Phys. Rev. D 15, 267 (1977).

    Article  CAS  ADS  Google Scholar 

  4. R. L. Jaffe, Phys. Rev. D 17, 1444 (1978).

    Article  CAS  ADS  Google Scholar 

  5. H. J. Lipkin, Phys. Lett. B 195, 484 (1987).

    Article  CAS  ADS  Google Scholar 

  6. S. K. Choi, et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003), arXiv: hep-ex/0309032.

    Article  PubMed  ADS  Google Scholar 

  7. D. Acosta, et al. (CDF), Phys. Rev. Lett. 93, 072001 (2004), arXiv: hep-ex/0312021.

    Article  PubMed  ADS  Google Scholar 

  8. V. M. Abazov, et al. (D0), Phys. Rev. Lett. 93, 162002 (2004), arXiv: hep-ex/0405004.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. R. Aaij, et al. (LHCb), Phys. Rev. Lett. 112, 222002 (2014), arXiv: 1404.1903.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. M. Ablikim, et al. (BESIII), Phys. Rev. Lett. 118, 092002 (2017), arXiv: 1610.07044.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. M. Ablikim, et al. (BESIII), Phys. Rev. Lett. 118, 092001 (2017), arXiv: 1611.01317.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. M. Ablikim, et al. (BESIII), Phys. Rev. D 96, 032004 (2017), arXiv: 1703.08787.

    Article  ADS  Google Scholar 

  13. B. Aubert, et al. (BaBar), Phys. Rev. Lett. 95, 142001 (2005), arXiv: hep-ex/0506081.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Q. He, et al. (CLEO), Phys. Rev. D 74, 091104 (2006), arXiv: hep-ex/0611021.

    Article  ADS  Google Scholar 

  15. C. Z. Yuan, et al. (Belle), Phys. Rev. Lett. 99, 182004 (2007), arXiv: 0707.2541.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Z. Q. Liu, et al. (Belle), Phys. Rev. Lett. 110, 252002 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. B. Aubert, et al. (BaBar), Phys. Rev. Lett. 98, 212001 (2007), arXiv: hep-ex/0610057.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. J. P. Lees, et al. (BaBar), Phys. Rev. D 89, 111103 (2014).

    Article  ADS  Google Scholar 

  19. X. L. Wang, et al. (Belle), Phys. Rev. Lett. 99, 142002 (2007), arXiv: 0707.3699.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. X. L. Wang, et al. (Belle), Phys. Rev. D 91, 112007 (2015), arXiv: 1410.7641.

    Article  ADS  Google Scholar 

  21. M. Ablikim, et al. (BESIII) Phys. Rev. Lett. 126, 102001 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. R. Aaij, et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015), arXiv: 1507.03414.

    Article  CAS  PubMed  ADS  Google Scholar 

  23. R. Aaij, et al. (LHCb), Phys. Rev. Lett. 117, 082002 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. R. Aaij, et al. (LHCb), Phys. Rev. Lett. 122, 222001 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. LHCb Collaboration, Sci. Bull. 65, 1983 (2020), arXiv: 2006.16957.

    Article  CAS  Google Scholar 

  26. CMS Collaboration, arXiv: 2306.07164.

  27. G. Aad, et al. (ATLAS), Phys. Rev. Lett. 131, 151902 (2023), arXiv: 2304.08962.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. F. J. Dyson, and N. H. Xuong, Phys. Rev. Lett. 13, 815 (1964).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  29. G. Fäldt, and C. Wilkin, Phys. Lett. B 701, 619 (2011), arXiv: 1105.4142.

    Article  ADS  Google Scholar 

  30. P. Adlarson, et al. (WASA-at-COSY), Phys. Rev. Lett. 106, 242302 (2011), arXiv: 1104.0123.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. P. Adlarson, et al. (WASA-at-COSY), Phys. Lett. B 721, 229 (2013), arXiv: 1212.2881.

    Article  CAS  ADS  Google Scholar 

  32. H. Kim, K. S. Kim, and M. Oka, Phys. Rev. D 102, 074023 (2020), arXiv: 2009.11983.

    Article  CAS  ADS  Google Scholar 

  33. Y. Dong, P. Shen, and Z. Zhang, Phys. Rev. D 97, 114002 (2018).

    Article  CAS  ADS  Google Scholar 

  34. M. Oka, S. Maeda, and Y. R. Liu, Int. J. Mod. Phys. Conf. Ser. 49, 1960004 (2019), arXiv: 1904.00586.

    Article  CAS  Google Scholar 

  35. S. Pepin, and F. Stancu, Phys. Rev. D 57, 4475 (1998), arXiv: hep-ph/9710528.

    Article  CAS  ADS  Google Scholar 

  36. J. Vijande, A. Valcarce, J. M. Richard, and P. Sorba, Phys. Rev. D 94, 034038 (2016), arXiv: 1608.03982.

    Article  ADS  Google Scholar 

  37. L. Meng, N. Li, and S. L. Zhu, Phys. Rev. D 95, 114019 (2017), arXiv: 1704.01009.

    Article  ADS  Google Scholar 

  38. Z. Y. Zhang, Y. W. Yu, P. N. Shen, L. R. Dai, A. Faessler, and U. Straub, Nucl. Phys. A 625, 59 (1997).

    Article  ADS  Google Scholar 

  39. S. M. Gerasyuta, and E. E. Matskevich, Phys. Rev. D 82, 056002 (2010), arXiv: 1003.0257.

    Article  ADS  Google Scholar 

  40. W. Park, A. Park, and S. H. Lee, Phys. Rev. D 92, 014037 (2015), arXiv: 1506.01123.

    Article  ADS  Google Scholar 

  41. X. H. Chen, Q. N. Wang, W. Chen, and H. X. Chen, Chin. Phys. C 45, 041002 (2021), arXiv: 1906.11089.

    Article  CAS  ADS  Google Scholar 

  42. H. Huang, J. Ping, X. Zhu, and F. Wang, arXiv: 2011.00513.

  43. S. R. Beane, et al. (NPLQCD), Phys. Rev. D 87, 034506 (2013), arXiv: 1206.5219.

    Article  ADS  Google Scholar 

  44. Z. Liu, H. T. An, Z. W. Liu, and X. Liu, Phys. Rev. D 105, 034006 (2022), arXiv: 2112.02510.

    Article  CAS  ADS  Google Scholar 

  45. K. G. Wilson, Phys. Rev. D 10, 2445 (1974).

    Article  CAS  ADS  Google Scholar 

  46. J. J. Dudek, R. G. Edwards, N. Mathur, and D. G. Richards, Phys. Rev. D 77, 034501 (2008), arXiv: 0707.4162.

    Article  ADS  Google Scholar 

  47. J. J. Dudek, R. G. Edwards, and D. G. Richards, Phys. Rev. D 73, 074507 (2006), arXiv: hep-ph/0601137.

    Article  ADS  Google Scholar 

  48. J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D 79, 094504 (2009), arXiv: 0902.2241.

    Article  ADS  Google Scholar 

  49. J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards, and C. E. Thomas, Phys. Rev. D 82, 034508 (2010), arXiv: 1004.4930.

    Article  ADS  Google Scholar 

  50. B. Blossier, M. D. Morte, G. Hippel, T. Mendes, and R. Sommer, J. High Energy Phys. 2009, 094 (2009), arXiv: 0902.1265.

    Article  Google Scholar 

  51. Q. A. Zhang, J. Hua, F. Huang, R. Li, Y. Li, C. Lu, P. Sun, W. Sun, W. Wang, and Y. Yang, Chin. Phys. C 46, 011002 (2022), arXiv: 2103.07064.

    Article  CAS  ADS  Google Scholar 

  52. Y. B. Li, et al. (Belle), Phys. Rev. Lett. 127, 121803 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. A. Bazavov, et al. (MILC), Phys. Rev. D 82, 074501 (2010), arXiv: 1004.0342.

    Article  ADS  Google Scholar 

  54. J. Koponen, A. Zimermmane-Santos, C. Davies, G. P. Lepage, and A. Lytle, EPJ Web Conf. 175, 06015 (2018).

    Article  Google Scholar 

  55. J. Gasser, and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).

    Article  ADS  Google Scholar 

  56. P. A. Zyla, et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Liu or Wei Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

We thank Zhan-Wei Liu, Zhen-Xing Zhao, Min-Huan Chu, Jun Hua, and Chun-Jiang Shi for useful discussion. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11735010, 11975127, 11911530088, U2032102,12005130, 12125503, and 12335003). Hang Liu, Jinchen He, and Wei Wang are also supported by the Natural Science Foundation ofShanghai (Grant No. 15DZ2272100). Peng Sun is also supported by Jiangsu Specially Appointed Professor Program. Yi-Bo Yang is also supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB34030303, and XDPB15). Peng Sun, Wei Wang, and Yi-Bo Yang are also supported by the National Natural Science Foundation ofChina (NSFC) and Deutsche Forschungsgemeinschaft (DFG) joint grant (Grant No. 12061131006). The calculation was supported by the Siyuan Mark 1 cluster at Center for High Performance Computing, Shanghai Jiao Tong University and National Super Computing Center in Zhengzhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., He, J., Liu, L. et al. Exploring hidden-charm and hidden-strange hexaquark states from lattice QCD. Sci. China Phys. Mech. Astron. 67, 211011 (2024). https://doi.org/10.1007/s11433-023-2205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2205-0

Navigation