Skip to main content
Log in

Imprints of ultralight axions on the gravitational wave and pulsar timing measurement

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The axion or axion-like particle motivated from a natural solution of strong CP problem or string theory is a promising dark matter candidate. We study the new observational effects of ultralight axion-like particles by the space-borne gravitational wave detector and the radio telescope. Taking the neutron star-black hole binary as an example, we demonstrate that the gravitational waveform could be obviously modified by the slow depletion of the axion cloud around the black hole formed through the superradiance process. We compare these new effects on the binary with the well-studied effects from dynamical friction with dark matter and dipole radiation in model-independent ways. Finally, we discuss the constraints from LIGO/Virgo and study the detectability of the ultralight axion particles at LISA and TianQin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Peccei, and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).

    Article  ADS  CAS  Google Scholar 

  2. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

    Article  ADS  CAS  Google Scholar 

  3. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

    Article  ADS  CAS  Google Scholar 

  4. J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).

    Article  ADS  CAS  Google Scholar 

  5. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 166, 493 (1980).

    Article  ADS  Google Scholar 

  6. A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980).

    Google Scholar 

  7. M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. B 104, 199 (1981).

    Article  ADS  Google Scholar 

  8. P. Sikivie, Rev. Mod. Phys. 93, 015004 (2021), arXiv: 2003.02206.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. P. Svrcek, and E. Witten, J. High Energ. Phys. 2006, 051 (2006), arXiv: hep-th/0605206.

    Article  ADS  Google Scholar 

  10. J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. B 120, 127 (1983).

    Article  ADS  Google Scholar 

  11. M. Dine, and W. Fischler, Phys. Lett. B 120, 137 (1983).

    Article  ADS  Google Scholar 

  12. P. Sikivie, Axions. Lecture Notes in Physics (Springer, Berlin, 2008), pp. 19–50

    Google Scholar 

  13. Y. B. Zel’Dovich, J. Exp. Theor. Phys. Lett. 14, 180 (1971).

    Google Scholar 

  14. Y. B. Zel’Dovich, J. Exp. Theor. Phys. 35, 1085 (1972).

    ADS  Google Scholar 

  15. A. A. Starobinsky, J. Exp. Theor. Phys. 37, 28 (1973).

    ADS  Google Scholar 

  16. T. J. M. Zouros, and D. M. Eardley, Ann. Phys. 118, 139 (1979).

    Article  ADS  CAS  Google Scholar 

  17. S. R. Dolan, Phys. Rev. D 76, 084001 (2007), arXiv: 0705.2880.

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Brito, V. Cardoso, and P. Pani, Superradiance. New Frontiers in Black Hole Physics (Springer, Cham, 2020).

    Book  Google Scholar 

  19. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  20. G. M. Harry, Class. Quantum Grav. 27, 084006 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Luo, L. S. Chen, H. Z. Duan, Y. G. Gong, S. Hu, J. Ji, Q. Liu, J. Mei, V. Milyukov, M. Sazhin, C. G. Shao, V. T. Toth, H. B. Tu, Y. Wang, Y. Wang, H. C. Yeh, M. S. Zhan, Y. Zhang, V. Zharov, and Z. B. Zhou, Class. Quantum Grav. 33, 035010 (2016), arXiv: 1512.02076.

    Article  ADS  Google Scholar 

  22. J. Mei, Y. Z. Bai, J. Bao, E. Barausse, L. Cai, E. Canuto, B. Cao, W. M. Chen, Y. Chen, Y. W. Ding, H. Z. Duan, H. Fan, W. F. Feng, H. Fu, Q. Gao, T. Q. Gao, Y. Gong, X. Gou, C. Z. Gu, D. F. Gu, Z. Q. He, M. Hendry, W. Hong, X. C. Hu, Y. M. Hu, Y. Hu, S. J. Huang, X. Q. Huang, Q. Jiang, Y. Z. Jiang, Y. Jiang, Z. Jiang, H. M. Jin, V. Korol, H. Y. Li, M. Li, M. Li, P. Li, R. Li, Y. Li, Z. Li, Z. Li, Z. X. Li, Y. R. Liang, Z. C. Liang, F. J. Liao, Q. Liu, S. Liu, Y. C. Liu, L. Liu, P. B. Liu, X. Liu, Y. Liu, X. F. Lu, Y. Lu, Z. H. Lu, Y. Luo, Z. C. Luo, V. Milyukov, M. Ming, X. Pi, C. Qin, S. B. Qu, A. Sesana, C. Shao, C. Shi, W. Su, D. Y. Tan, Y. Tan, Z. Tan, L. C. Tu, B. Wang, C. R. Wang, F. Wang, G. F. Wang, H. Wang, J. Wang, L. Wang, P. Wang, X. Wang, Y. Wang, Y. F. Wang, R. Wei, S. C. Wu, C. Y. Xiao, X. S. Xu, C. Xue, F. C. Yang, L. Yang, M. L. Yang, S. Q. Yang, B. Ye, H. C. Yeh, S. Yu, D. Zhai, C. Zhang, H. Zhang, J. Zhang, J. Zhang, L. Zhang, X. Zhang, X. Zhang, H. Zhou, M. Y. Zhou, Z. B. Zhou, D. D. Zhu, T. G. Zi, and J. Luo, Prog. Theor. Exp. Phys. 2021, 05A107 (2021), arXiv: 2008.10332.

    Article  CAS  Google Scholar 

  23. P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E. Barausse, P. Bender, E. Berti, P. Binetruy, M. Born, D. Bortoluzzi, J. Camp, C. Caprini, V. Cardoso, M. Colpi, J. Conklin, N. Cornish, C. Cutler, K. Danzmann, R. Dolesi, L. Ferraioli, V. Ferroni, E. Fitzsimons, J. Gair, L. G. Bote, D. Giardini, F. Gibert, C. Grimani, H. Halloin, G. Heinzel, T. Hertog, M. Hewitson, K. Holley-Bockelmann, D. Hollington, M. Hueller, H. Inchauspe, P. Jetzer, N. Karnesis, C. Killow, A. Klein, B. Klipstein, N. Korsakova, S. L. Larson, J. Livas, I. Lloro, N. Man, D. Mance, J. Martino, I. Mateos, K. McKenzie, S. T. McWilliams, C. Miller, G. Mueller, G. Nardini, G. Nelemans, M. Nofrarias, A. Petiteau, P. Pivato, E. Plagnol, E. Porter, J. Reiche, D. Robertson, N. Robertson, E. Rossi, G. Russano, B. Schutz, A. Sesana, D. Shoemaker, J. Slutsky, C. F. Sopuerta, T. Sumner, N. Tamanini, I. Thorpe, M. Troebs, M. Vallisneri, A. Vecchio, D. Vetrugno, S. Vitale, M. Volonteri, G. Wanner, H. Ward, P. Wass, W. Weber, J. Ziemer, and P. Zweifel, arXiv: 1702.00786.

  24. W. R. Hu, and Y. L. Wu, Natl. Sci. Rev. 4, 685 (2017).

    Article  CAS  Google Scholar 

  25. A. Arvanitaki, and S. Dubovsky, Phys. Rev. D 83, 044026 (2011), arXiv: 1004.3558.

    Article  ADS  Google Scholar 

  26. A. Arvanitaki, M. Baryakhtar, and X. Huang, Phys. Rev. D 91, 084011 (2015), arXiv: 1411.2263.

    Article  ADS  Google Scholar 

  27. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, Phys. Rev. D 81, 123530 (2010), arXiv: 0905.4720.

    Article  ADS  Google Scholar 

  28. A. Arvanitaki, M. Baryakhtar, S. Dimopoulos, S. Dubovsky, and R. Lasenby, Phys. Rev. D 95, 043001 (2017), arXiv: 1604.03958.

    Article  ADS  Google Scholar 

  29. R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein, and P. Pani, Phys. Rev. Lett. 119, 131101 (2017), arXiv: 1706.05097.

    Article  ADS  PubMed  Google Scholar 

  30. R. Abbott, et al. (The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration), Phys. Rev. D 105, 102001 (2022), arXiv: 2111.15507.

    Article  ADS  CAS  Google Scholar 

  31. C. Palomba, S. D’Antonio, P. Astone, S. Frasca, G. Intini, I. La Rosa, P. Leaci, S. Mastrogiovanni, A. L. Miller, F. Muciaccia, O. J. Piccinni, L. Rei, and F. Simula, Phys. Rev. Lett. 123, 171101 (2019), arXiv: 1909.08854.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. L. Sun, R. Brito, and M. Isi, Phys. Rev. D 101, 063020 (2020), arXiv: 1909.11267 [Erratum: Phys. Rev. D 102, 089902 (2020)].

    Article  ADS  CAS  Google Scholar 

  33. K. K. Y. Ng, S. Vitale, O. A. Hannuksela, and T. G. F. Li, Phys. Rev. Lett. 126, 151102 (2021), arXiv: 2011.06010.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. C. Yuan, Y. Jiang, and Q. G. Huang, Phys. Rev. D 106, 023020 (2022), arXiv: 2204.03482.

    Article  ADS  CAS  Google Scholar 

  35. X. Tong, Y. Wang, and H. Y. Zhu, Phys. Rev. D 106, 043002 (2022), arXiv: 2205.10527.

    Article  ADS  CAS  Google Scholar 

  36. S. Detweiler, Phys. Rev. D 22, 2323 (1980).

    Article  ADS  Google Scholar 

  37. D. Baumann, H. S. Chia, J. Stout, and L. t. Haar, J. Cosmol. Astropart. Phys. 2019, 006 (2019), arXiv: 1908.10370.

    Article  CAS  Google Scholar 

  38. R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein, and P. Pani, Phys. Rev. D 96, 064050 (2017), arXiv: 1706.06311.

    Article  ADS  Google Scholar 

  39. R. Brito, V. Cardoso, and P. Pani, Class. Quantum Grav. 32, 134001 (2015), arXiv: 1411.0686.

    Article  ADS  Google Scholar 

  40. H. Yoshino, and H. Kodama, Prog. Theor. Exp. Phys. 2014, 043E02 (2014), arXiv: 1312.2326.

    Article  Google Scholar 

  41. P. Gondolo, and J. Silk, Phys. Rev. Lett. 83, 1719 (1999), arXiv: astro-ph/9906391.

    Article  ADS  CAS  Google Scholar 

  42. L. Sadeghian, F. Ferrer, and C. M. Will, Phys. Rev. D 88, 063522 (2013), arXiv: 1305.2619.

    Article  ADS  Google Scholar 

  43. S. Chandrasekhar, Astrophys. J. 97, 255 (1943).

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Chandrasekhar, Astrophys. J. 97, 263 (1943).

    Article  ADS  MathSciNet  Google Scholar 

  45. S. Chandrasekhar, Astrophys. J. 98, 54 (1943).

    Article  ADS  MathSciNet  Google Scholar 

  46. K. Eda, Y. Itoh, S. Kuroyanagi, and J. Silk, Phys. Rev. D 91, 044045 (2015), arXiv: 1408.3534.

    Article  ADS  Google Scholar 

  47. J. Zhang, and H. Yang, Phys. Rev. D 101, 043020 (2020), arXiv: 1907.13582.

    Article  ADS  CAS  Google Scholar 

  48. J. Binney, and S. Tremaine, Galactic Dynamics: Second Edition (Princeton University Press, Princeton, 2008).

    Book  Google Scholar 

  49. O. A. Hannuksela, K. C. Y. Ng, and T. G. F. Li, Phys. Rev. D 102, 103022 (2020), arXiv: 1906.11845.

    Article  ADS  CAS  Google Scholar 

  50. D. Croon, A. E. Nelson, C. Sun, D. G. E. Walker, and Z. Z. Xianyu, Astrophys. J. 858, L2 (2018), arXiv: 1711.02096.

    Article  ADS  Google Scholar 

  51. J. Kopp, R. Laha, T. Opferkuch, and W. Shepherd, J. HighEnerg. Phys. 2018, 96 (2018).

    Google Scholar 

  52. T. K. Poddar, S. Mohanty, and S. Jana, Phys. Rev. D 101, 083007 (2020), arXiv: 1906.00666.

    Article  ADS  CAS  Google Scholar 

  53. J. A. Dror, R. Laha, and T. Opferkuch, Phys. Rev. D 102, 023005 (2020), arXiv: 1909.12845.

    Article  ADS  CAS  Google Scholar 

  54. J. Huang, M. C. Johnson, L. Sagunski, M. Sakellariadou, and J. Zhang, Phys. Rev. D 99, 063013 (2019), arXiv: 1807.02133.

    Article  ADS  CAS  Google Scholar 

  55. J. M. Weisberg, D. J. Nice, and J. H. Taylor, Astrophys. J. 722, 1030 (2010), arXiv: 1011.0718.

    Article  ADS  Google Scholar 

  56. L. S. Finn, Phys. Rev. D 46, 5236 (1992), arXiv: gr-qc/9209010.

    Article  ADS  CAS  Google Scholar 

  57. C. Cutler, and E. E. Flanagan, Phys. Rev. D 49, 2658 (1994), arXiv: gr-qc/9402014.

    Article  ADS  CAS  Google Scholar 

  58. X. C. Hu, X. H. Li, Y. Wang, W. F. Feng, M. Y. Zhou, Y. M. Hu, S. C. Hu, J. W. Mei, and C. G. Shao, Class. Quantum Grav. 35, 095008 (2018), arXiv: 1803.03368.

    Article  ADS  Google Scholar 

  59. T. Robson, N. J. Cornish, and C. Liu, Class. Quantum Grav. 36, 105011 (2019), arXiv: 1803.01944.

    Article  ADS  Google Scholar 

  60. K. Eda, Y. Itoh, S. Kuroyanagi, and J. Silk, Phys. Rev. Lett. 110, 221101 (2013), arXiv: 1301.5971.

    Article  ADS  PubMed  Google Scholar 

  61. C. Cutler, and M. Vallisneri, Phys. Rev. D 76, 104018 (2007), arXiv: 0707.2982.

    Article  ADS  Google Scholar 

  62. H. Yoshino, and H. Kodama, Prog. Theor. Phys. 128, 153 (2012), arXiv: 1203.5070.

    Article  ADS  Google Scholar 

  63. P. H. Chavanis, Phys. Rev. D 98, 023009 (2018), arXiv: 1710.06268.

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa Peng Huang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 12205387), and the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2019B030302001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, N., Huang, F.P. Imprints of ultralight axions on the gravitational wave and pulsar timing measurement. Sci. China Phys. Mech. Astron. 67, 210411 (2024). https://doi.org/10.1007/s11433-023-2172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2172-7

Navigation