Skip to main content
Log in

In Situ Green Generation of Palladium Nanoparticles on Reduced Graphene Oxide and Its Catalytic Activity for Suzuki Coupling Reactions

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A novel in-situ route was developed to load palladium nanoparticles on the graphene oxide in this paper. Palladium ions was immobilized on graphene oxide by cation exchange, then the palladium nanoparticles supported on reduced graphene oxide (Pd NPs-rGO) was prepared via the Suzuki coupling reaction to in situ formed Pd NPs without applying additional reductants, the approach is considerably more convenient and environmentally benign compared to conventional methods for the preparation of supported metal nanoparticles. To explaining the structure and morphology, the Pd NPs-rGO nanocatalyst was characterized by FT-IR, XPS, TEM, and ICP-AES measurements. The outcomes indicate that the Pd0 and Pd2+ are spread on the surface of rGO, and their ratio would affect the catalytic activity. Pd NPs-rGO has excellent catalytic performance in Suzuki coupling reaction with high yields and it could be recovered by centrifugation. Moreover, the catalyst can be recycled seven times without significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. D. Stoller, S. J. Park, Y. W. Zhu, et al., Nano Lett. 8, 3498 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. X. Huang, X. Y. Qi, F. Boey, et al., Chem. Soc. Rev. 41, 666 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. M. Nasrollahzadeh, Z. Issaabadi, M. M. Tohidi, et al., Chem. Rec. 17, 1 (2017).

    Article  Google Scholar 

  4. X. Zhang, J. X. Zhu, C. S. Tiwary, et al., ACS Appl. Mater. Interface 8, 10858 (2016).

    Article  CAS  Google Scholar 

  5. Y. T. Zhang, H. H. Shu, G. Gang, et al., Electrochim. Acta 109, 570 (2013).

    Article  CAS  Google Scholar 

  6. M. Yun, M. S. Ahmed, and S. Jeon, J. Power Sources 293, 380 (2015).

    Article  CAS  Google Scholar 

  7. G. H. Wu, Y. F. Wu, X. W. Liu, et al., Anal. Chim. Acta 745, 33 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. X. Wang, M. Wu, W. R. Tang, et al., J. Electroanal. Chem. 695, 10 (2013).

    Article  CAS  Google Scholar 

  9. C. H. Chen, T. Y. Chung, C. C. Shen, et al., Int. J. Hydrogen Energy 38, 3681 (2013).

    Article  CAS  Google Scholar 

  10. B. Killc, S. Sencanli, and O. Metin, Mol. Catal. 361362, 104 (2012).

  11. G. M. Scheuermann, L. Rumi, P. Steurer, et al., J. Am. Chem. Soc. 131, 8262 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. C. Bai, Q. S. Zhao, Y. Li, et al., Catal. Lett. 144, 1617 (2014).

    Article  CAS  Google Scholar 

  13. S. Rana, S. Maddila, K. Yalagala, et al., Appl. Catal., A 505, 539 (2015).

  14. N. Z. Shang, S. T. Gao, C. Feng, et al., RSC Adv. 3, 21863 (2013).

    Article  CAS  Google Scholar 

  15. N. Z. Shang, C. Feng, H. Y. Zhang, et al., Catal. Commun. 40, 111 (2013).

    Article  CAS  Google Scholar 

  16. S. K. Movahed, M. Dabiri, and A. Bazgir, Appl. Catal., A 488, 265 (2014).

  17. B. J. Jiang, S. Z. Song, J. Q. Wang, et al., Nano Res. 7, 1280 (2014).

    Article  CAS  Google Scholar 

  18. A. R. Siamaki, A. Khder, V. Abdelsayed, et al., J. Catal. 279, 1 (2011).

    Article  CAS  Google Scholar 

  19. K. W. Brinkley, M. Burkholder, A. R. Siamaki, et al., Green Process. Synth. 4, 241 (2015).

    CAS  Google Scholar 

  20. S. J. Hoseini, M. Dehghani, and H. Nasrabadi, Catal. Sci. Technol. 4, 1078 (2014).

    Article  Google Scholar 

  21. N. Hussain, A. Borah, G. Darabdhara, et al., New J. Chem. 39, 6631 (2015).

    Article  CAS  Google Scholar 

  22. P. Upadhyay and V. Srivastava, Green Process. Synth. 5, 123 (2016).

    CAS  Google Scholar 

  23. Y. Li, X. B. Fan, J. J. Qi, et al., Nano Res. 3, 429 (2010).

    Article  CAS  Google Scholar 

  24. Y. V. Ioni, S. E. Lyubimov, A. A. Korlyukov, et al., Russ. Chem. Bull. 61, 1825 (2012).

    Article  CAS  Google Scholar 

  25. Z. L. Wang, J. M. Yan, H. L. Wang, et al., Sci. Rep. 2, 598 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. C. Liu, X. M. Li, Z. M. Gao, et al., Tetrahedron 71, 3954 (2015).

    Article  CAS  Google Scholar 

  27. Q. L. Zhu, F. Z. Song, Q. J. Wang, et al., J. Mater. Chem. A 6, 5544 (2018).

    Article  CAS  Google Scholar 

  28. S. R. Aabaka, J. C. Mao, M. Lavanya, et al., J. Organomet. Chem. 937, 121719 (2021).

  29. L. J. Cote, F. Kim, and J. X. Huang, J. Am. Chem. Soc. 131, 1043 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Y. X. Li, C. Y. Sun, C. J. Yu, et al., Adv. Mat. Res. 476–478, 1488 (2012).

    Google Scholar 

  31. G. I. Titelman, V. Gelman, S. Bron, et al., Carbon 43, 641 (2005).

    Article  CAS  Google Scholar 

  32. H. T. Yu, B. W. Zhang, C. Bulin, et al., Sci. Rep. 6, 36143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Taher, D. J. Lee, and I. M. Lee, Synlett 27, 2333 (2016).

    Article  CAS  Google Scholar 

  34. A. Zarnegaryan, Z. Dehbanipour, and D. Elhamifar, Polyhedron 170, 530 (2019).

    Article  CAS  Google Scholar 

  35. X. Tong, Y. X. Zhao, T. Huang, et al., Appl. Surf. Sci. 255, 9463 (2009).

    Article  CAS  Google Scholar 

  36. J. F. Moulder, W. F. Stickle, P. E. Sobol, et al., Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer, Eden Prairie, MN, 1992).

    Google Scholar 

  37. P. Wang, G. Zhang, L. Liu, et al., Mater. Res. Bull. 59, 365 (2014).

    Article  CAS  Google Scholar 

  38. T. Ma, T. T. Liu, Y. Y. Yang, et al., Chin. J. Inorg. Chem. 30, 127 (2014).

    CAS  Google Scholar 

  39. J. E. Camp, J. J. Dunsford, E. P. Cannons, et al., ACS Sustain. Chem. Eng. 2, 500 (2014).

    Article  CAS  Google Scholar 

  40. M. Mondal, T. Begum, P. K. Gogoi, et al., Chem. Sel. 1, 4645 (2016).

    CAS  Google Scholar 

  41. X. J. Ni, Z. F. Wu, X. D. Gu, et al., Langmuir 33, 8157 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. H. Veisi, M. Pirhayati, A. Kakanejadifard, et al., Chem. Sel. 3, 1820 (2018).

    CAS  Google Scholar 

  43. X. Y. Shan, N. Sui, W. G. Liu, et al., J. Mater. Chem. A 7, 4446 (2019).

    Article  CAS  Google Scholar 

  44. M. H. Salehi, M. Yousefi, M. Hekmati, et al., Polyhedron 165, 132 (2019).

    Article  CAS  Google Scholar 

  45. J. Z. Li, X. F. Bai, and H. F. Lv, Micropor. Mesopor. Mater. 275, 69 (2018).

    Article  Google Scholar 

  46. T. F. Xu, P. T. Lu, S. Wohlrab, et al., Catal. Commun. 157, 106328 (2021).

  47. G. Goncalves, P. Marques, C. M. Granadeiro, et al., Chem. Mater. 21, 4796 (2009).

    Article  CAS  Google Scholar 

  48. Y. Yang, C. E. Castano, F. Gupton, et al., Nanoscale 8, 19564 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (no. 2022YFE0105100), Key R&D Program of Yunnan Precious Metal Laboratory (no. 2022050211), The Recruitment of Oversea Talents of Kunming City (no. 13020163), R&D Application Research Project of Sino-Precious Metal Holding Co., Ltd. (no. 2020040603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunbo Jiang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Sheng, X., Jiang, Y. et al. In Situ Green Generation of Palladium Nanoparticles on Reduced Graphene Oxide and Its Catalytic Activity for Suzuki Coupling Reactions. Russ. J. Phys. Chem. 97, 3104–3110 (2023). https://doi.org/10.1134/S0036024423130101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423130101

Keywords:

Navigation