Skip to main content
Log in

Investigation of Dihydrogen Bonded Interaction in X3CH⋅⋅⋅HNa, X2CH2⋅⋅⋅HNa (X = F, Cl, and Br) Binary and Ternary Complexes: A DFT and DFT-D3 Approach

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A theoretical study was conducted to investigate the dihydrogen and alkali-halogen bonding in binary X3CH⋅⋅⋅HNa, X2CH2⋅⋅⋅HNa and ternary complexes 2(X3CH)⋅⋅⋅HNa, 2(X2CH2)⋅⋅⋅HNa (where X = F, Cl, Br). The computations were performed using the B3LYP method with different basis sets, namely pople’s (6-311++G**) and dunning type (aug-cc-pVDZ and aug-cc-pVTZ). Additionally, dispersion-corrected density functional theory calculations were carried out for all the structures. The interpretation of structural parameters through interaction energy revealed that Br3CH⋅⋅⋅HNa complex has the shortest binding distance with more interaction energy. The results illustrate that the H⋅⋅⋅H interaction is strengthened in the ternary complexes compared to binary. The vibrational analysis divulged that C–H and H–Na stretching frequencies are blue and red shifted upon dihydrogen bond formation. Moreover, natural bond orbital (NBO), quantum theory of atoms in molecule (QTAIM), non-covalent interaction (NCI)–reduced density gradient (RDG) analysis were carried out to understand the nature of intermolecular interactions, followed by the molecular electrostatic potential (MEP) analysis which confirm the existence of non-covalent interaction between C‒H and H–Na bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Amiri, A. Zabardasti, and S. Farhadi, Chem. Pap. 73, 1447 (2019).

    Article  CAS  Google Scholar 

  2. Y. Li, L. Zhang, S. Du, F. de Ren, and W. Liang Wang, Comput. Theor. Chem. 977, 201 (2011).

    Article  CAS  Google Scholar 

  3. B. G. Oliveira, C. R. Chim. 19, 995 (2016).

    Article  CAS  Google Scholar 

  4. P. D. Duraisamy, P. Gopalan, and A. Angamuthu, Chem. Pap. 74, 1609 (2020).

    Article  CAS  Google Scholar 

  5. J. C. Lee, E. Peris, A. L. Rheingold, and R. H. Crabtree, J. Am. Chem. Soc. 116, 11014 (1994).

    Article  CAS  Google Scholar 

  6. A. J. Lough, S. Park, R. Ramachandran, and R. H. Morris, J. Am. Chem. Soc. 116, 8356 (1994).

    Article  CAS  Google Scholar 

  7. R. Custelcean and J. E. Jackson, Chem. Rev. 101, 1963 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. I. Alkorta, J. De, V. Cier, M. Ya, and J. E. Del Bene, J. Phys. Chem. A 106, 9325 (2002).

    Article  CAS  Google Scholar 

  9. J. G. Planas, C. Viñas, F. Teixidor, A. Comas-Vives, G. Ujaque, and A. Lledós, J. Am. Chem. Soc. 127, 15976 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. K. Verma and K. S. Viswanathan, Phys. Chem. Chem. Phys. 19, 19067 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. G. N. Patwari, T. Ebata, and N. Mikami, J. Chem. Phys. 114, 8877 (2001).

    Article  Google Scholar 

  12. P. Lipkowski, S. J. Grabowski, T. L. Robinson, and J. Leszczynski, J. Phys. Chem. A 108, 10865 (2004).

    Article  CAS  Google Scholar 

  13. W. Zierkiewicz and P. Hobza, Phys. Chem. Chem. Phys. 6, 5288 (2004).

    Article  CAS  Google Scholar 

  14. P. D. Duraisamy, P. Gopalan, and A. Angamuthu, Monatsh. Chem. 151, 1569 (2020).

    Article  CAS  Google Scholar 

  15. B. G. Oliveira, Comput. Theor. Chem. 998, 173 (2012).

    Article  CAS  Google Scholar 

  16. C. R. Fuson and B. A. Bull, Chem. Rev. 15, 3 (1934).

    Article  Google Scholar 

  17. H. Qian, Y. L. Lin, B. Xu, L. P. Wang, Z. C. Gao, and N. Y. Gao, Chem. Eng. J. 349, 849 (2018).

    Article  CAS  Google Scholar 

  18. H. L. Hassinger, R. M. Soll, and G. W. Gribble, Tetrahedron Lett. 39, 3095 (1998).

    Article  CAS  Google Scholar 

  19. J. Friedrich, S. Wettmarshausen, and M. Hennecke, Surf. Coat. Technol. 203, 3647 (2009).

    Article  CAS  Google Scholar 

  20. S. Saravanan, V. Nagarajan, A. Srivastava, and R. Chandiramouli, Int. J. Environ. Anal. Chem., 0306 (2019).

  21. M. Protocol, C. Cao, Y. Chen, Y. Wu, and E. Deumens, Int. J. Quantum Chem. 111, 4020 (2011).

    Article  Google Scholar 

  22. B. Hui Li, W. Jing Shi, and F. de Ren, Comput. Theor. Chem. 1020, 81 (2013).

    Article  Google Scholar 

  23. E. Cubero, M. Orozco, and F. J. Luque, Chem. Phys. Lett. 310, 445 (1999).

    Article  CAS  Google Scholar 

  24. B. G. Oliveira, Comput. Theor. Chem. 998, 173 (2012).

    Article  CAS  Google Scholar 

  25. Y. Mao, P. R. Horn, N. Mardirossian, T. Head-Gordon, C. K. Skylaris, and M. Head-Gordon, J. Chem. Phys. 145 (2016).

  26. C. Lee, C. Hill, and N. Carolina, Chem. Phys. Lett. 162, 165 (1989).

    Article  Google Scholar 

  27. A. D. Becke, J. Chem. Phys. 104, 1040 (1996).

    Article  CAS  Google Scholar 

  28. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  29. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  CAS  Google Scholar 

  30. R. F. W. Bader, Chem. Rev. 91, 893 (1991).

    Article  CAS  Google Scholar 

  31. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  PubMed  Google Scholar 

  32. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. G. A. Zhurko, ChemCraft, Vers. 1.8. http://www.chemcraftprog.com.

  34. M. J. Frisch et al., Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully thankful to “Bioinformatics resources and applications facility (BRAF), C-DAC, Pune” for providing the computational facilities for this work. Also, acknowledge the offering workstation from Computer Technology Centre (CTC) at KITS.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abiram Angamuthu.

Ethics declarations

The authors declare that there are no conflicts of interests.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

devi Duraisamy, P., Prince Makarios Paul, S., Gopalan, P. et al. Investigation of Dihydrogen Bonded Interaction in X3CH⋅⋅⋅HNa, X2CH2⋅⋅⋅HNa (X = F, Cl, and Br) Binary and Ternary Complexes: A DFT and DFT-D3 Approach. Russ. J. Phys. Chem. 97, 3068–3080 (2023). https://doi.org/10.1134/S0036024423130277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423130277

Keywords:

Navigation