Skip to main content
Log in

Coupling Interaction of Baclofen with Ninhydrin in Aqueous Acidic Medium: Kinetics and Computational Studies

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Kinetics of the reaction of ninhydrin (Nin) with baclofen (Bac) has been studied spectrophotometrically in an aqueous acidic medium under pseudo order conditions over 30–50°C range, 0.1–0.4 × 10–4 M of Bac, 0.5–5.0 × 10–2 M Nin, and ionic strength 0.3–0.9 M. The thermodynamics activation parameters involving ∆H* and ∆S* have been calculated. The UV-visible spectroscopic measurements were carried out to confirm the coupling between Nin and Bac. The reaction is first order with respect to [Nin] and [Bac], decreases as pH increases in the range (3.90–5.06). The experimental rate law is consistent with a mechanism in which the protonated and deprotonated form of Nin are involved in the rate-determining step and the deprotonated species is the more reactive one. The product of the reaction was examined spectroscopically using 1H-NMR and IR spectra in addition to an ultra-performance liquid chromatograph (UPLC). Density functional theory (DFT) was performed to search the geometries of the final product result from the reaction between Nin and Bac. Also, enthalpy of the reaction was calculated theoretically with DFT. Interaction region indicator (IRI) calculations is used to reveal chemical bonding and weak interaction in the coupled compound of Bac–Nin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Scheme 1.
Scheme 2.
Scheme 3.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. D. Kumar and M. A. Rub, J. Mol. Liq. 274, 639 (2019).

    Article  CAS  Google Scholar 

  2. F. A. Siddiqui, N. Sher, N. Shafi, H. Shamshad, and A. Zubair, J. Anal. Sci. Technol. 4, 1 (2013).

    Article  Google Scholar 

  3. B. H. Stuart, Forensic Analytical Techniques (Wiley, West Sussex, 2013).

    Google Scholar 

  4. A. B. Khan, A. Bhattarai, Z. H. Jaffari, B. Saha, and D. Kumar, Colloid Polym. Sci. 299, 1285 (2021).

    Article  CAS  Google Scholar 

  5. D. Kumar and M. A. Rub, J. Surfact. Deterg. 22, 1299 (2019).

    Article  CAS  Google Scholar 

  6. D. Kumar, M. A. Rub, and A. M. Asiri, R. Soc. Open Sci. 7, 200775 (2020).

  7. B. Fry, J. F. Carter, K. Yamada, N. Yoshida, and D. Juchelka, Rapid Commun. Mass Spectrom. 32, 992 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. K. A. Omar and R. Sadeghi, J. Mol. Liq. 303, 112644 (2020).

  9. W. Meier-Augenstein, Stable Isotope Forensics: Methods and Forensic Applications of Stable Isotope Analysis (Wiley, New York, 2017).

    Book  Google Scholar 

  10. N. G. Bowery, D. R. Hill, A. Hudson, A. Doble, D. N. Middlemiss, J. Shaw, and M. Turnbull, Nature (London, U.K.) 283, 92 (1980).

    Article  CAS  Google Scholar 

  11. R. Gerkin, S. C. Curry, M. V. Vance, P. W. Sankowski, and R. D. Meinhart, Ann. Emerg. Med. 15, 843 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. N. G. Bowery, D. R. Hill, and A. Hudson, Brit. J. Pharmacol. 78, 191 (1983).

    Article  CAS  Google Scholar 

  13. S. J. Hosseinimehr, F. Pourmorad, E. Moshtaghi, and M. Amini, Asian J. Chem. 22, 522 (2010).

    CAS  Google Scholar 

  14. D. E. Hansel, C. R. Hansel, M. K. Shindle, E. M. Reinhardt, L. Madden, E. B. Levey, and A. H. Hoon, Jr., Pediat. Neurol. 29, 203 (2003).

    Article  PubMed  Google Scholar 

  15. M. M. Hefnawy and H. Y. Aboul-Enein, Talanta 61, 667 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. R. Goda, N. Murayama, Y. Fujimaki, and K. Sudo, J. Chromatogr., B 801, 257 (2004).

  17. S. Y. Chang, N. Y. Zheng, and C. S. Chen, Int. J. Appl. Sci. Eng. 2, 277 (2004).

    Google Scholar 

  18. H. E. Abdellatef and H. M. Khalil, J. Pharm. Biomed. Anal. 31, 209 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. C. Zhang, R. Zhang, S. Zhang, M. Xu, and S. Zhang, Trials 15, 1 (2014).

    Article  Google Scholar 

  20. R. R. Young, New England J. Med. 304, 96 (1981).

    Article  CAS  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., Gaussian 09, Revision C.01 (Gaussian Inc., Wallingford, 2009).

    Google Scholar 

  22. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  PubMed  Google Scholar 

  23. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. T. Jézéquel, V. Joubert, P. Giraudeau, G. S. Remaud, and S. Akoka, Magn. Reson. Chem. 55, 77 (2017).

    Article  PubMed  Google Scholar 

  25. K. Bayle, M. Grand, A. Chaintreau, R. J. Robins, W. Fieber, H. Sommer, and G. S. Remaud, Anal. Chem. 87, 7550 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Handbook of Proton-NMR and Data (Asahi Res. Centre, Academic, Japan, 1985), Vol. 3.

  27. R. H. Khan, J. Chem. Res. 6, 290 (2000).

    Article  Google Scholar 

  28. T. M. Ansari, A. Raza, and A. U. Rehman, Anal. Sci. 21, 1133 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. D. S. Hage, Reference Module in Chemistry, Molecular Sciences, and Chemical Engineering (Elsevier, Amsterdam, 2013).

    Google Scholar 

  30. V. Khlebnikov, J. Wijnen, W. J. van der Kemp, and D. W. Klomp, Ann. Rep. NMR Spectrosc. 87, 319 (2016).

    Article  CAS  Google Scholar 

  31. E. Pandey and S. K. Upadhyay, J. Dispers. Sci. Technol. 27, 213 (2006).

    Article  CAS  Google Scholar 

  32. M. Bano and I. A. Khan, Ind. J. Chem. 42, 1132 (2003).

    Google Scholar 

  33. T. Lu and Q. Chen, Chem. Methods 1, 231 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Abdel-Khalek.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, T.A., Khaled, E.S., Mohamed, R.A. et al. Coupling Interaction of Baclofen with Ninhydrin in Aqueous Acidic Medium: Kinetics and Computational Studies. Russ. J. Phys. Chem. 97, 2985–2994 (2023). https://doi.org/10.1134/S0036024423130228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423130228

Keywords:

Navigation