Skip to main content
Log in

Antibiotic Drug Solubility and Thermodynamics Profile in Binary (1,4-Dioxane, Acetonitrile, and Water) Solvents at Different Temperatures (T = 298.15–318.15 K)

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Cefpodoxime proxetil (CP) solubility in binary solvent mixtures (1,4-dioxane + water and acetonitrile + water) was tested using the gravimetric method at temperature between 298.15 to 318.15 K and under normal atmospheric pressure. The experimental mole fraction solubility of CP was increased with increasing temperature as well as with the proportion of co-solvent in all systems. Then Apelblat, Buchowski-Ksiazczak, Van’t Hoff, \(CNIBS{\text{/}}R{-} K\) and the modified Jouyban-Acree models were used for the prediction of the theoretical mole fraction solubility of CP. The experimental and theoretical mole fraction solubility were found to be good in this arrangement. Additionally, thermodynamics modeling of CP was carried out by using Van’t Hoff’s equation. The data on the solubility and thermodynamics would be useful in the production, isolation, separation, and crystallization of CP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Ahmed, H. M. Abdel-Wadood, and N. A. Mohamed, J. Chromatogr., Ser. B 934, 34 (2013).

    CAS  Google Scholar 

  2. G. Patel and S. Rajput, Acta Chromatogr. 23, 215 (2011).

    Article  CAS  Google Scholar 

  3. V. K. Kakumanu, V. K. Arora, and A. K. Bansal, J. Chromatogr., Ser. B 835, 16 (2006).

    CAS  Google Scholar 

  4. G. Agrawal and S. Bhargava, Curr. Drug Deliv. 5, 1 (2008).

    Article  PubMed  Google Scholar 

  5. A. O. Ebenezer, C.Chioma, and I. M. Omoegbe, J. Pharm. Pharmacol. 5, 1 (2017).

    Google Scholar 

  6. A. Bajaj, M. R. P. Rao, I. Khole, and G. Munjapara, Drug Develop. Ind. Pharm. 39, 635 (2013).

    Article  CAS  Google Scholar 

  7. M. Nappinnai and S. Sivaneswari, J. Pharm. Res. 7, 304 (2013).

    CAS  Google Scholar 

  8. A. Mujtaba, M. Ali, and K. Kohli, Chem. Eng. Res. Des. 92, 156 (2014).

    Article  CAS  Google Scholar 

  9. R. Bhola, H. Vaghani, K. Bhatt, J. Parikh, and R. Ghumara, Chem. Africa 5, 899 (2022).

    Article  CAS  Google Scholar 

  10. R. Bhola, H. Modi, C. Patel, H. Vaghani, K. Bhatt, and R. Ghumara, J. Ind. Chem. Soc. 99, 100427 (2022).

  11. M. Li, Y. Liu, M. Li, Z. Shang, M. Liu, and D. Han, Fluid Phase Equilib. 539, 113027 (2021).

  12. J. Luo, Y. Wang, C. Shi, F. Zhang, and Q. Yu, J. Chem. Thermodyn. 168, 106748 (2022).

  13. S. Yu, W. Xing, F. Xue, Y. Cheng, and B. Li, J. Chem. Thermodyn. 152, 106259 (2021).

  14. L. Wang, D. Li, L. Wang, H. Hao, and L. Zhou, J. Chem. Eng. Data 66, 4593 (2021).

    Article  CAS  Google Scholar 

  15. H. Wei, N. Gao, and L. Dang, Trans. Tianjin Univ. 27, 460 (2021).

    Article  CAS  Google Scholar 

  16. A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 31, 85 (1999).

    Article  CAS  Google Scholar 

  17. R. Ghumara, H. Modi, A. Prajapati, C. Patel, and P. Parsaniya, Russ. J. Phys. Chem. A 95, 21 (2021).

    Article  Google Scholar 

  18. H. Buchowski, A. Ksiazczak, and S. Pietrzyk, J. Phys. Chem. 84, 975 (1980).

    Article  CAS  Google Scholar 

  19. M. Barzegar-Jalali, P. Jafari, and A. Jouyban, Phys. Chem. Liq. 250, 1 (2022).

    Google Scholar 

  20. R. Bhola, R. Ghumara, C. Patel, K. Bhatt, S. Patel, J. Parikh, A. Desai, and H. Vaghani, J. Chem. Eng. Data 68, 744 (2023).

    Article  CAS  Google Scholar 

  21. Y. Wu, H. Ma, and Y. Han, J. Chem. Thermodyn. 161, 106555 (2021).

  22. J. Chen, A. Farajtabar, A. Jouyban, W. E. Acree, P. Zhu, and H. Zhao, J. Chem. Eng. Data 66, 3531 (2021).

    Article  CAS  Google Scholar 

  23. S. Yu, Y. Cheng, W. Feng, W. Xing, H. Li, and F. Xue, J. Mol. Liq. 339, 116750 (2021).

  24. H. Rezaei, E. Rahimpour, H. Zhao, F. Martinez, and A. Jouyban, J. Mol. Liq. 336, 116519 (2021).

  25. I. P. Osorio, F. Martínez, M. Á. Peña, A. Jouyban, and W. E. Acree, Phys. Chem. Liq. 59, 890 (2021).

    Article  CAS  Google Scholar 

  26. W. Xu, Y. Ma, and B. Feng, J. Chem. Eng. Data 67, 825 (2022).

    Article  CAS  Google Scholar 

  27. Y. Wu, H. Ma, nd Y. Han, J. Chem. Thermodyn. 161, 106555 (2021).

  28. A. Ahad, F. Shakeel, M. Raish, A. Ahmad, Y. A. bin Jardan, F. I. Al-Jenoobi, and A. M. Al-Mohizea, J. Therm. Anal. Calorim. 147, 3117 (2022).

    Article  CAS  Google Scholar 

  29. S. Alvani-Alamdari, H. Rezaei, E. Rahimpour, S. Hemmati, F. Martinez, M. Barzegar-Jalali, and A. Jouyban, Phys. Chem. Liq. 59, 12 (2021).

    Article  CAS  Google Scholar 

  30. M. A. Kalam, A. Alshamsan, M. Alkholief, I. A. Alsarra, R. Ali, N. Haq, M. K. Anwer, and F. Shakeel, ACS Omega 5, 1708 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. K. Kodide, P. Asadi, and J. Thati, J. Chem. Eng. Data 64, 5196 (2019).

    Article  CAS  Google Scholar 

  32. A. Romdhani, F. Martínez, Á. Peña, E. Rahimpour, A. Jouyban, and W. E. Acree, Phys. Chem. Liq. 60, 203 (2022).

    Article  CAS  Google Scholar 

  33. H. Rezaei, E. Rahimpour, H. Zhao, F. Martinez, M. Barzegar-Jalali, and A. Jouyban, J. Mol. Liq. 347, 118352 (2022).

  34. K. Vakili, H. Rezaei, K. Poturcu, A. Jouyban, J. Hanaee, F. Martinez, and E. Rahimpour, J. Mol. Liq. 344, 117915 (2021).

  35. T. Sayad, K. Poturcu, M. Moradi, E. Rahimpour, H. Zhao, and A. Jouyban, J. Mol. Liq. 342, 117537 (2021).

  36. D. R. Delgado, O. Bahamón-Hernandez, N. E. Cerquera, C. P. Ortiz, F. Martínez, E. Rahimpour, A. Jouyban, and W. E. Acree, J. Mol. Liq. 322, 114979 (2021).

  37. P. Cysewski, T. Jeliński, D. Procek, and A. Dratwa, Fluid Phase Equilib. 529, 112883 (2021).

  38. M. Barzegar-Jalali, E. Mazaher Haji Agha, K. Adibkia, S. Hemmati, F. Martinez, and A. Jouyban, Phys. Chem. Liq. 59, 690 (2021).

    Article  CAS  Google Scholar 

  39. R. Bhola, R. Ghumara, K. Bhatt, and H. Vaghani, Biointerface Res. Appl. Chem. 12, 4374 (2021).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Principal, MUIS, Ganpat University for providing basic laboratory facility and also grateful to Mann Pharmaceutical for the providing CP for the analysis, and also thankful to Prof. Sagar Patel and Prof. Kinjal Joshi for the proof reading of the manuscript.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keyur Bhatt or Hasit Vaghani.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhola, R., Ghumara, R., Patel, C. et al. Antibiotic Drug Solubility and Thermodynamics Profile in Binary (1,4-Dioxane, Acetonitrile, and Water) Solvents at Different Temperatures (T = 298.15–318.15 K). Russ. J. Phys. Chem. 97, 2915–2924 (2023). https://doi.org/10.1134/S0036024423130186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423130186

Keywords:

Navigation