Skip to main content
Log in

Turing Patterns in a \(p\)-Adic FitzHugh-Nagumo System on the Unit Ball

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

We introduce discrete and \(p\)-adic continuous versions of the FitzHugh-Nagumo system on the one-dimensional \(p\)-adic unit ball. We provide criteria for the existence of Turing patterns. We present extensive simulations of some of these systems. The simulations show that the Turing patterns are traveling waves in the \(p\)-adic unit ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, Theory of \(p\)-Adic Distributions: Linear and Nonlinear Models, London Mathematical Society Lecture Note Series 370 (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  2. B. Ambrosio, M. A. Aziz-Alaoui and V. L. E. Phan, “Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type,” Discrete Contin. Dyn. Syst., Ser. B 23 (9), 3787–3797 (2018).

    MathSciNet  Google Scholar 

  3. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, “Complex networks: structure and dynamics,” Phys. Rep 424 (4-5), 175–308 (2006).

    Article  MathSciNet  Google Scholar 

  4. T. Carletti and H. Nakao, “Turing patterns in a network-reduced FitzHugh-Nagumo model,” Phys. Rev. E 101, 022203 (2020).

    Article  MathSciNet  Google Scholar 

  5. S.-Y. Chung and J.-H. Lee, “Blow-up for discrete reaction-diffusion equations on networks,” Appl. Anal. Discr. Math. 9 (1), 103–119 (2015).

    Article  MathSciNet  Google Scholar 

  6. T. Digernes, “A review of finite approximations, Archimedean and non-Archimedean,” \(p\)-Adic Num. Ultrametr. Anal. Appl. 10 (4), 253–266 (2018).

    Article  MathSciNet  Google Scholar 

  7. E. M. Bakken and T. Digernes, “Finite approximations of physical models over local fields,” \(p\)-Adic Num. Ultrametr. Anal. Appl. 7 (4), 245–258 (2015).

    Article  MathSciNet  Google Scholar 

  8. E. M. Bakken, T. Digernes, M. U. Lund and D. Weisbart, “Finite approximations of physical models over \(p\)-adic fields,” \(p\)-Adic Num. Ultrametr. Anal. Appl. 5 (4), 249–259 (2013).

    Article  MathSciNet  Google Scholar 

  9. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V. Volovich, “On \(p\)-adic mathematical physics,” \(p\)-Adic Num. Ultrametr. Anal. Appl. 1 (1), 1–17 (2009).

    Article  MathSciNet  Google Scholar 

  10. P. R. Halmos, Measure Theory (D. Van Nostrand Company, 1950).

    Book  Google Scholar 

  11. Y. Ide, H. Izuhara and T. Machida, “Turing instability in reaction-diffusion models on complex networks,” Physica A 457, 331–347 (2016).

    Article  MathSciNet  Google Scholar 

  12. A. Khrennikov, S. Kozyrev and W. A. Zúñiga-Galindo, Ultrametric Equations and its Applications, Encyclopedia of Mathematics and its Applications 168 (Cambridge Univ. Press, 2018).

    Google Scholar 

  13. A. N. Kochubei, Pseudo-Differential Equations and Stochastics over non-Archimedean Fields (Marcel Dekker, Inc., New York, 2001).

    Book  Google Scholar 

  14. M. M. Zheng, B. Shao and Q. Ouyang, “Identifying network topologies that can generate Turing pattern,” J. Theor. Biol. 408, 88–96 (2016).

    Article  Google Scholar 

  15. D. Mugnolo, Semigroup Methods for Evolution Equations on Networks. Understanding Complex Systems (Springer, Cham, 2014).

    Book  Google Scholar 

  16. J. D. Murray, Mathematical Biology. I. An Introduction, Third ed. (Springer-Verlag, New York, 2003).

    Google Scholar 

  17. H. Nakao and A. S. Mikhailov, “Turing patterns in network-organized activator-inhibitor systems,” Nature Phys. 6, 544–550 (2010).

    Article  Google Scholar 

  18. H. G. Othmer and L. E. Scriven, “Instability and dynamic pattern in cellular networks,” J. Theor. Biol. 32, 507–537 (1971).

    Article  Google Scholar 

  19. H. G. Othmer and L. E. Scriven, “Nonlinear aspects of dynamic pattern in cellular networks,” J. Theor. Biol. 43, 83–112 (1974).

    Article  Google Scholar 

  20. B. Perthame, Parabolic Equations in Biology. Growth, Reaction, Movement and Diffusion, Lecture Notes on Mathematical Modelling in the Life Sciences (Springer, Cham, 2015).

    Book  Google Scholar 

  21. H. Shoji, K. Yamada, D. Ueyama and T. Ohta, “Turing patterns in three dimensions,” Phys. Rev. E 75 (4), 046212, 13 pp. (2007).

    Article  MathSciNet  Google Scholar 

  22. A. Slavova and P. Zecca, “Complex behavior of polynomial FitzHugh-Nagumo cellular neural network model,” Nonlin. Anal. Real World Appl. 8 (4), 1331–1340 (2007).

    Article  MathSciNet  Google Scholar 

  23. M. H. Taibleson, Fourier Analysis on Local Fields (Princeton Univ. Press, 1975).

    Google Scholar 

  24. A. M. Turing, “The chemical basis of morphogenesis,” Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    Article  MathSciNet  Google Scholar 

  25. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics (World Scientific, 1994).

    Book  Google Scholar 

  26. J. von Below and J. A. Lubary, “Instability of stationary solutions of reaction-diffusion-equations on graphs,” Result. Math. 68 (1-2), 171–201 (2015).

    Article  MathSciNet  Google Scholar 

  27. H. Zhao, X. Huang and X. Zhang, “Turing instability and pattern formation of neural networks with reaction-diffusion terms,” Nonlin. Dynam. 76 (1), 115–124 (2014).

    Article  MathSciNet  Google Scholar 

  28. W. A. Zúñiga-Galindo, Pseudodifferential Equations over non-Archimedean Spaces, Lectures Notes in Mathematics 2174 (Springer, Cham, 2016).

    Google Scholar 

  29. W. A. Zúñiga-Galindo, “Eigen paradox and the quasispecies model in a non-Archimedean framework,” Physics A 602, Paper No. 127648, 18 pp. (2022).

    Article  MathSciNet  Google Scholar 

  30. W. A. Zúñiga-Galindo, “Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems,” Nonlinearity 31 (6), 2590–2616 (2018).

    Article  MathSciNet  Google Scholar 

  31. W.A. Zúñiga-Galindo, “Reaction-diffusion equations on complex networks and Turing patterns, in \(p\)-adic analysis,” J. Math. Anal. Appl. 491 (1), 124239, 39 pp. (2020).

    Article  MathSciNet  Google Scholar 

  32. W. A. Zúñiga-Galindo, “Non-Archimedean models of morphogenesis,” In: Zuniga-Galindo, W.A., Toni, B. (eds) Advances in Non-Archimedean Analysis and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics \(\&\) Health (Springer, Cham 2021).

    Chapter  Google Scholar 

Download references

Funding

The third author was partially supported by the Lokenath Debnath Endowed Professorship, UTRGV.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. F. Chacón-Cortés, C. A. Garcia-Bibiano or W. A. Zúñiga-Galindo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chacón-Cortés, L.F., Garcia-Bibiano, C.A. & Zúñiga-Galindo, W.A. Turing Patterns in a \(p\)-Adic FitzHugh-Nagumo System on the Unit Ball. P-Adic Num Ultrametr Anal Appl 15, 245–265 (2023). https://doi.org/10.1134/S2070046623040015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046623040015

Keywords

Navigation