Skip to main content
Log in

Effect of quintessence dark energy on the shadow of Hayward black holes with spherical accretion

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

It is expected that the astrophysical black holes are surrounded by a luminous accretion flow that is a necessary ingredient for imaging a black hole. In this paper, we study the influence of quintessence dark energy on the shadow images of a Hayward black hole surrounded by the static/infalling spherical accretion flow. We find the effect of the state parameter of quintessence matter on the horizons, photon sphere and impact parameter of the quintessence Hayward black hole. The observed specific intensity of the shadow and also the shadow and photon ring luminosities of the quintessence Hayward black hole with two different spherical accretion flows are investigated. We also use the Event Horizon Telescope observational data of Sgr A* and M87* to constrain the free parameters of quintessence Hayward black hole. Finally, by comparison the results of quintessence Hayward black holes with quintessence Schwarzschild and Hayward black holes we find that the effect of quintessence matter on the black hole shadow is more significant than the regularity effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. K Akiyama et al Astrophys. J. 875 L1 (2019)

    Article  ADS  Google Scholar 

  2. K Akiyama et al Astrophys. J. 875 L2 (2019)

    Article  ADS  Google Scholar 

  3. K Akiyama et al Astrophys. J. 875 L3 (2019)

    Article  ADS  Google Scholar 

  4. K Akiyama et al Astrophys. J. 875 L4 (2019)

    Article  ADS  Google Scholar 

  5. K Akiyama et al Astrophys. J. 875 L5 (2019)

    Article  ADS  Google Scholar 

  6. K Akiyama et al Astrophys. J. 875 L6 (2019)

    Article  ADS  Google Scholar 

  7. K Akiyama, A Alberdi, W Alef, J C Algaba and R Anantua Astrophys. J. Letter. 930 L12 (2022)

    Article  ADS  Google Scholar 

  8. P V P Cunha and C A R Herdeiro Gen. Relativ. Grav. 50 42 (2018)

    Article  ADS  Google Scholar 

  9. R M Wald General Relativity (The University of Chicago Press) p 506 (1984)

  10. J L Synge Mon. Not. R. Astron. Soc. 131 463 (1966)

    Article  ADS  Google Scholar 

  11. J M Bardeen Black Holes: Proceeding of the Les Houches Summer School, Session 215239 (eds.) C De Witt, B S De Witt (Gordon and Breach, New York) (1973)

  12. L Amarilla, E F Eiroa and G Giribet Phys. Rev. D 81 124045 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  13. F Atamurotov, A Abdujabbarov and B Ahmedov Astrophys. Space Sci. 348 179 (2013)

    Article  ADS  Google Scholar 

  14. A Abdujabbarov, F Atamurotov, N Dadhich, B Ahmedov and Z Stuchlik Eur. Phys. J. C 75 399 (2015)

    Article  ADS  Google Scholar 

  15. P V P Cunha, C A R Herdeiro, B Kleihaus, J Kunz and E Radu Phys. Lett. B 768 373 (2017)

    Article  ADS  Google Scholar 

  16. B P Singh and S G Ghosh Ann. Phys 395 127 (2018)

    Article  ADS  Google Scholar 

  17. S Vagnozzi and L Visinelli Phys. Rev. D 100 024020 (2019)

    Article  ADS  Google Scholar 

  18. G Z Babar, A Z Babar and F Atamurotov Eur. Phys. J. C 80 761 (2020)

    Article  ADS  Google Scholar 

  19. I Banerjee, S Chakraborty and S Sen Gupta Phys. Rev. 101 041301 (2020)

    Article  Google Scholar 

  20. M Khodadi and E N Saridakis Phys. Dark. Univ. 32 100835 (2021)

    Article  Google Scholar 

  21. M Khodadi, G Lambiase and D F Mota JCAP 09 028 (2021)

    Article  ADS  Google Scholar 

  22. J Badia and E F Eiroa Phys. Rev. D 104 084055 (2021)

    Article  ADS  Google Scholar 

  23. M Okyay and A Ovgun JCAP 01 009 (2022)

    Article  ADS  Google Scholar 

  24. F Rahaman, K N Singh, R Shaikh, T Manna and S Aktar Class. Quant. Grav. 38 215007 (2021)

    Article  ADS  Google Scholar 

  25. M Heydari-Fard, M Heydari-Fard and H R Sepangi Phys. Rev. D 105 124009 (2022)

    Article  ADS  Google Scholar 

  26. M Heydari-Fard and M Heydari-Fard Int. J. Mod. Phys. D 2250066 1 (2022)

    Google Scholar 

  27. A He, J Tao, Y Xue and L Zhang Chin. Phys. C 46 065102 (2022)

    Article  ADS  Google Scholar 

  28. J P Luminet Astron. Astrophys. 75 228 (1979)

    ADS  Google Scholar 

  29. S E Gralla, D E Holz and R M Wald Phys. Rev. D 100 024018 (2019)

    Article  ADS  Google Scholar 

  30. P V P Cunha, N A Eirco, C A R Herdeiro and J P S Lemos JCAP 03 035 (2020)

    Article  ADS  Google Scholar 

  31. R Narayan, M D Johnson and C F Gammie ApJ Letter 885 L33 (2019)

    Article  ADS  Google Scholar 

  32. X X Zeng and H Q Zhang Eur. Phys. J. C 80 1058 (2020)

    Article  ADS  Google Scholar 

  33. X X Zeng, H Q Zhang and H Zhang Eur. Phys. J. C 80 872 (2020)

    Article  ADS  Google Scholar 

  34. S Guo, K J He, G R Li and G P Li Class. Quant. Grav. 38 165013 (2021)

    Article  ADS  Google Scholar 

  35. S Guo, G R Li and E W Liang Phys. Rev. D 105 023024 (2022)

    Article  ADS  Google Scholar 

  36. M Wang, S Chen, J Wang and J Jing Eur. Phys. J. C 80 110 (2020)

    Article  ADS  Google Scholar 

  37. K Saurabh and K Jusufi Eur. Phys. J. C 81 490 (2021)

    Article  ADS  Google Scholar 

  38. H M Wang, Z C Lin and S W Wei Nuclear Phys. B 985 116026 (2022)

    Article  Google Scholar 

  39. S Kala, Saurabh, H Nandan and P Sharma Int. J. Mod. Phys. A 35 2050177 (2020)

  40. Y Hou, Z Zhang, H Yan, M Guo and B Chen Phys. Rev. D 106 064058 (2022)

    Article  ADS  Google Scholar 

  41. S J Ma, T C Ma, J B Deng and X R Hu arXiv:2206.12820 [gr-qc]

  42. O Donmez, F Dogan and T Sahin arXiv:2205.14382 [astro-ph.HE]

  43. S Guo, G R Li and E W Liang Class. Quant. Grav. 39 135004 (2022)

    Article  ADS  Google Scholar 

  44. A Uniyal, R C Pantig and A Ovgun Phys. Dark. Univ. 40 101178 (2023)

    Article  Google Scholar 

  45. M Guerrero, G J Olmo, D Rubiera-Garcia and D S C Gomez Phys. Rev. D 105 084057 (2022)

    Article  ADS  Google Scholar 

  46. X X Zeng, K J He and G P Li Sci. China Phys. Mech. Astron. 65 290411 (2022)

    Article  ADS  Google Scholar 

  47. A M Bauer, A Cárdenas-Avendaño, C F Gammie and N Yunes Astrophys. J. 925 119 (2022)

    Article  ADS  Google Scholar 

  48. M Okyay and A Ovgun JCAP 01 009 (2022)

    Article  ADS  Google Scholar 

  49. Q Gan, P Wang, H Wu and H Yang Phys. Rev. D 104 044049 (2021)

    Article  ADS  Google Scholar 

  50. M Guerrero, G J Olmo, D Rubiera-Garcia and D S C Gomez JCAP 08 036 (2021)

    Article  ADS  Google Scholar 

  51. K J He, S Guo, S C Tan and G P Li Chin. Phys. C 46 085106 (2022)

    Article  ADS  Google Scholar 

  52. X Qin, S Chen and J Jing Class. Quant. Grav. 38 115008 (2021)

    Article  ADS  Google Scholar 

  53. R Shaikh, P Kocherlakota, R Narayan and P S Joshi Mon. Not. R. Astron. Soc. 482 52 (2019)

    Article  ADS  Google Scholar 

  54. K Saurabh and K Jusufi Eur. Phys. J. C 81 490 (2021)

    Article  ADS  Google Scholar 

  55. M Heydari-Fard, S Ghassemi Honarvar and M Heydari-Fard Mon. Not. R. Astron. Soc. 521 708 (2023)

    Article  ADS  Google Scholar 

  56. A G Riess et al Astron. J. 116 1009 (1998)

    Article  ADS  Google Scholar 

  57. S Perlmutter et al Astrophys. J. 517 565 (1999)

    Article  ADS  Google Scholar 

  58. O Lahav Contemp Phys. 61 132 (2020)

    Article  ADS  Google Scholar 

  59. S Weinberg Rev. Mod. Phys. 61 1 (1989)

    Article  ADS  Google Scholar 

  60. M Doran and C Wetterich Nucl. Phys. B Proc. Suppl. 124 57 (2003)

    Article  ADS  Google Scholar 

  61. B Wang, E Abdalla, F Atrio-Barandela and D Pavon Rept. Prog. Phys. 79 096901 (2016)

    Article  ADS  Google Scholar 

  62. I Zlatev, L M Wang and P J Steinhardt Phys. Rev. Lett. 82 896 (1999)

    Article  ADS  Google Scholar 

  63. H E S Velten, R F vom Marttens and W Zimdahl Eur. Phys. J. C 74 3160 (2014)

    Article  ADS  Google Scholar 

  64. S del Campo, R Herrera and D Pavon JCAP 01 020 (2009)

    Article  Google Scholar 

  65. M Bouhmadi-López, J Morais and A Zhuk Phys. Dark. Univ. 14 11 (2016)

    Article  Google Scholar 

  66. S M Carroll Phys. Rev. Lett. 81 3067 (1998)

    Article  ADS  Google Scholar 

  67. C Armendariz-Picon, V F Mukhanov and P J Steinhardt Phys. Rev. Lett. 85 4438 (2000)

    Article  ADS  Google Scholar 

  68. J Khoury and A Weltman Phys. Rev. Lett. 93 171104 (2004)

    Article  ADS  Google Scholar 

  69. T Padmanabhan Phys. Rev. D 66 021301 (2002)

    Article  ADS  Google Scholar 

  70. R R Caldwell Phys. Lett. B 545 23 (2002)

    Article  ADS  Google Scholar 

  71. M Gasperini, F Piazza and G Veneziano Phys. Rev. D 65 023508 (2002)

    Article  ADS  Google Scholar 

  72. V Sahni Class. Quant. Grav. 19 3435 (2002)

    Article  ADS  Google Scholar 

  73. P J E Peebles and B Ratra Astrophys. J. 325 L17 (1988)

    Article  ADS  Google Scholar 

  74. R R Caldwell, R Dave and P J Steinhardt Phys. Rev. Lett. 80 1582 (1998)

    Article  ADS  Google Scholar 

  75. V V Kiselev Class. Quant. Grav. 20 1187 (2003)

    Article  ADS  Google Scholar 

  76. V V Kiselev arXiv:0303031 [gr-qc]

  77. J M Bardeen Proceedings of the International Conference GR5 (U.S.S.R., Tbilisi) 174 (1968)

  78. E Ayon-Beato and A Garcia Phys. Rev. Lett. 80 5056 (1998)

    Article  ADS  Google Scholar 

  79. E Ayon-Beato and A Garcia Gen. Relativ. Grav. 31 629 (1999)

    Article  ADS  Google Scholar 

  80. E Ayon-Beato and A Garcia Phys. Lett. B 464 25 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  81. S A Hayward Phys. Rev. Lett. 96 031103 (2006)

    Article  ADS  Google Scholar 

  82. E Ayon-Beato and A Garcia Phys. Lett. B 493 149 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  83. Z Y Fan and X Wang Phys. Rev. D 94 124027 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  84. K A Bronnikov Phys. Rev. D 96 128501 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  85. B Toshmatov, Z Stuchlík and B Ahmedov Phys. Rev. D 98 028501 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  86. J Vrba, A Abdujabbarov, A Tursunov, B Ahmedov and Z Stuchlik Eur. Phys. J. C 79 778 (2019)

    Article  ADS  Google Scholar 

  87. C Bambi and L Modesto Phys. Lett. B 721 329 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  88. V P Frolov Phys. Rev. D 94 104056 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  89. C H Nam Gen. Relativ. Grav. 50 57 (2018)

    Article  ADS  Google Scholar 

  90. O Pedraza, L A López, R Arceo and I Cabrera-Munguia Gen. Relativ. Grav. 53 24 (2021)

    Article  ADS  Google Scholar 

  91. L L Shi, J P Hu, Y Zhang, C Ma and P F Duan Commun. Theor. Phys. 71 1187 (2019)

    Article  ADS  Google Scholar 

  92. A Benavides-Gallego, A A Abdujabbarov and C Bambi Phys. Rev. D 101 044038 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  93. B P Singh Ann. Phys. 441 168892 (2022)

    Article  Google Scholar 

  94. S Saghafi and K Nozari JHAP 3 31 (2022)

    Google Scholar 

  95. G Sidharth and S Das arXiv:2209.00365 [gr-qc]

  96. B P Singh Phys. Dark Univ. 42 101279 (2023)

    Article  Google Scholar 

  97. W F Cao, W F Liu and X Wu Gen. Relativ. Grav. 55 120 (2023)

    Article  ADS  Google Scholar 

  98. A Abdujabbarov, B Toshmatov, Z Stuchlík and B Ahmedov Int. J. Mod. Phys. D 26 1750051 (2016)

    Article  ADS  Google Scholar 

  99. A Belhaj and Y Sekhmani Gen. Relativ. Grav. 54 17 (2022)

    Article  ADS  Google Scholar 

  100. C Sun, Y Liu, W L Qian and R Yue Chin. Phys. C 46 065103 (2022)

    Article  ADS  Google Scholar 

  101. P Z He, Q Q Fan, H R Zhang and J B Deng Eur. Phys. J. C 80 1195 (2020)

    Article  ADS  Google Scholar 

  102. R Kumar, S G Ghosh and A Wang Phys. Rev. D 100 124024 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  103. A Belhaj, H Belmahi, M Benali, H El Moumni, M A Essebani and M B Sedra Mod. Phys. Lett. A 37 2250032 (2022)

    Article  ADS  Google Scholar 

  104. Z Stuchlik and J Schee Eur. Phys. J. C 79 44 (2019)

    Article  ADS  Google Scholar 

  105. H S Ramadhan, M F Ishlahb, F P Pratamac and I Alfredod Eur. Phys. J. C 83 465 (2023)

    Article  ADS  Google Scholar 

  106. K J He, S Guo, S C Tan and G P Li Chin. Phys. C 46 085106 (2022)

    Article  ADS  Google Scholar 

  107. P H Mou, Y X Chen, K J He and G P Li Commun. Theor. Phys. 74 125401 (2022)

    Article  ADS  Google Scholar 

  108. B Toshmatov, Z Stuchlík, B Ahmedov and D Malafarina Phys. Rev. D 99 064043 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  109. C Bambi Black Holes: A Laboratory for Testing Strong Gravity (Springer) (2017)

  110. K Jusufi, K A Ovgun, J Saavedra, Y Vasquez and P A Gonzalez Phys. Rev. D 97 124024 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  111. W Javed, J Abbas and A Ovgun Ann. Phys. 418 168183 (2020)

    Article  Google Scholar 

  112. H Shiyang, D Chen, L Dan, W Xin and E Liang Eur. Phys. J. C 82 885 (2022)

    Article  ADS  Google Scholar 

  113. V Perlick and O Y Tsupko Phys. Rep. 947 1 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  114. Y Mizuno, Z Younsi, C M Fromm, O Porth, M De Laurentis, H Olivares, H Falcke, M Kramer and L Rezzolla Nat. Astron. 2 585 (2018)

    Article  ADS  Google Scholar 

  115. D Psaltis Gen. Relativ. Grav. 51 137 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  116. A Stepanian, S Khlghatyan and V G Gurzadyan Eur. Phys. J. Plus 136 127 (2021)

    Article  Google Scholar 

  117. Z Younsi, D Psaltis and F Özel Astrophys. J. 942 1 (2023)

    Article  Google Scholar 

  118. R K Walia, S G Ghosh and S D Maharaj Astrophys. J. 939 2 (2022)

    Article  Google Scholar 

  119. S Vagnozzi, R Roy, Y D Tsai et al Class. Quant. Grav. 40 165007 (2023)

    Article  ADS  Google Scholar 

  120. M Jaroszynski and A Kurpiewski Astron. Astrophys. 326 419 (1997)

    ADS  Google Scholar 

  121. C Bambi Phys. Rev. D 87 107501 (2013)

    Article  ADS  Google Scholar 

  122. M Novello, V A De Lorenci, J M Salim and R Klippert Phys. Rev. D 61 045001 (2000)

    Article  ADS  Google Scholar 

  123. V A De Lorenci, R Klippert, M Novello and J M Salim Phys. Lett. B. 482 134 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referees for valuable and interesting comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malihe Heydari-Fard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari-Fard, M. Effect of quintessence dark energy on the shadow of Hayward black holes with spherical accretion. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03023-0

Keywords

Navigation