Skip to main content
Log in

Investigation of elastic scattering angular distributions of \(^{12,13}\)C + \(^{90, 91, 92, 94, 96}\)Zr: a comparative analysis of different optical model potentials

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The elastic scattering data of \(^{12}\)C + \(^{90, 91, 92, 94, 96}\)Zr at 66 MeV and \(^{13}\)C + \(^{90, 91, 92, 94, 96}\)Zr at 64 MeV are reanalyzed within the framework of the optical model (OM) using phenomenological Woods–Saxon (WS) potential and microscopic double folding potentials. The microscopic potentials employed in the study are the velocity-dependent S\({\tilde{a}}\)o Paulo Potential version 2 (SPP2), the Brazilian nuclear potential (BNP), and the density-dependent Michigan-3-Yukawa (CDM3Y6) potential. Both the real and imaginary parts of the microscopic potentials are constructed from the folding model. Comparative studies are performed for the real and imaginary potentials using the phenomenological and microscopic forms. The sensitivity of the elastic scattering cross sections to the three different folding potentials is tested and compared with the results obtained using the phenomenological WS potential. The analysis revealed that the results obtained with the SPP2 and BNP potentials fit the data well with renormalization factors \(N_\text {R}\) = 1 and \(N_\text {I}\) = 0.78 to 0.9 for the real and imaginary parts, respectively. Additionally, the CDM3Y6 potential required renormalization factors \(N_\text {R}\) = 0.6 to 0.8 and \(N_\text {I}\) = 0.4 to 0.8 to fit the \(^{12}\)C elastic scattering data, and renormalization factors \(N_\text {R}\) = 0.7 to 1 and \(N_\text {I}\) = 0.4 to 0.8 to fit the \(^{13}\)C elastic scattering data. A notable finding from the present study is that the SPP2 potential successfully describes the \(^{12,13}\)C + \(^{90,91,92,94,96}\)Zr system better than the previous calculations using the first version of SPP. Overall, all the calculated results agree reasonably well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cui-Hua Rong, Gao-Long Zhang, Lin Gan, Zhi-Hong Li, L. C. Brandão, E. N. Cardozo et. al., Chin. Phys. C 44, 104003 (2020).

  2. L C Chamon, B V Carlson, L R Gasques, D Pereira, C De Conti, M A G Alvarez et al Phys. Rev. C 66 014610 (2002).

    Article  ADS  Google Scholar 

  3. Mesut Karakoc Compt. Phys. Comm. 284 108613 (2023).

    Article  Google Scholar 

  4. D Y Pang, P Roussel-Chomaz, H Savajols, R L Varner and R Wolski Phys. Rev. C 79 024615 (2009).

    Article  ADS  Google Scholar 

  5. A J Koning and J P Delaroche Nucl. Phys. A 713 231 (2003).

    Article  ADS  Google Scholar 

  6. R L Varner, W J Thompson, T L McAbee, E J Ludwig and T B Clegg Phys. Rep. 201 57 (1991).

    Article  ADS  Google Scholar 

  7. F G Perey Phys. Rev. 131 745 (1963).

    Article  ADS  Google Scholar 

  8. C M Perey and F G Perey At. Data Nucl. Data Tables 17 1 (1976).

    Article  ADS  Google Scholar 

  9. F D Becchetti Jr and G W Greenlees Phys. Rev. 182 1209 (1969).

    Article  ADS  Google Scholar 

  10. C M Perey and F G Perey Phys. Rev. 132 755 (1963).

    Article  ADS  Google Scholar 

  11. W W Daehnick, J D Childs and Z Vrcelj Phys. Rev. C 21 2253 (1980).

    Article  ADS  Google Scholar 

  12. X Li, C Liang and C Cai Nucl. Phys. A 789 103 (2007).

    Article  ADS  Google Scholar 

  13. L C Chamon, B V Carlson and L R Gasques Comp. Phys. Com. 267 108061 (2021).

    Article  Google Scholar 

  14. L C Chamon, L R Gasques and B V Carlson Phys. Rev. C 101 034603 (2020).

    Article  ADS  Google Scholar 

  15. L C Chamon, L R Gasques and B V Carlson Phys. Rev. C 184 044607 (2011).

    Article  ADS  Google Scholar 

  16. L R Gasques, L C Chamon, A Lépine-Szily, V Scarduelli, V A B Zagatto, D Abriola et al Phys. Rev. C 101 044604 (2020).

    Article  ADS  Google Scholar 

  17. Sunday D Olorunfunmi and Armand Bahini Bra. J. Phys. 52 11 (2022).

    Article  ADS  Google Scholar 

  18. K Wang, Y Y Yang, V Guimarães, D Y Pang, F F Duan, Z Y Sun et al Phys. Rev. C. 105 054616 (2022).

    Article  ADS  Google Scholar 

  19. S Hamada and A A Ibraheem Int. J. Mod. Phy. E. 31 2250019 (2022).

    Article  ADS  Google Scholar 

  20. A H Amer, Z A Mahmoud and Y E Penionzhkevich Nucl. Phys. A. 1020 122398 (2022).

    Article  Google Scholar 

  21. V Durant and P Capel Phys Rev. C. 106 044608 (2022).

    Article  ADS  Google Scholar 

  22. U Umbelino, R Lichtenthäler, O C Santos, K C Pires, A S Serra, V Scarduelli et al Phys. Rev. C. 106 054602 (2022).

    Article  ADS  Google Scholar 

  23. L R Gasques, L C Chamon and G P Cessel Eur. Phys. J. A. 58 102 (2022).

    Article  ADS  Google Scholar 

  24. S Hamada, A H Al-Ghamdi, A A Alholaisi, A A Ibraheem, N Amangeldi and Y Abdou, Int. J. Mod. Phys. E. 2350015 (2023).

  25. L C Chamon, L R Gasques and J C Zamora J. Phys. G: Nucl. Part. Phys. 49 035101 (2022).

    Article  ADS  Google Scholar 

  26. M N El-Hammamy J. Taibah Univ. Sci. 17 2175577 (2023).

    Article  Google Scholar 

  27. M N El-Hammamy, A Ibraheem, M E Farid, E F Elshamy and S Hamada Revista Mexicana de Física 69 031201–1 (2023).

    Article  Google Scholar 

  28. D T Khoa, W von Oertzen, H G Bohlen and S Ohkubo J. Phys. G Nucl. Part. Phys. 34 R111 (2007).

    Article  Google Scholar 

  29. D T Khoa, G R Satchler and W von Oertzen Phys. Rev. C 56 954 (1997).

    Article  ADS  Google Scholar 

  30. M E Brandan and G R Satchler Phys. Rep. 285 142 (1997).

    Article  ADS  Google Scholar 

  31. G R Satchler and W G Love Phys. Rep. 55 183 (1979).

    Article  ADS  Google Scholar 

  32. L C Chamon, L R Gasques and B V Carlson Phys. Rev. C 101 034603 (2020).

    Article  ADS  Google Scholar 

  33. M Rhoades-Brown, M H Macfarlane and S C Pieper Phys. Rev. C 21 2417 (1980).

    Article  ADS  Google Scholar 

  34. M H Macfarlane and S C Pieper, Argonne National Laboratory Report No. ANL-76-11 (1978) (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunday D. Olorunfunmi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olorunfunmi, S.D., Adeojo, S.A. & Bahini, A. Investigation of elastic scattering angular distributions of \(^{12,13}\)C + \(^{90, 91, 92, 94, 96}\)Zr: a comparative analysis of different optical model potentials. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03025-y

Keywords

Navigation