Skip to main content
Log in

Return-to-Normality in a Piecewise Deterministic Markov SIR+V Model with Pharmaceutical and Non-pharmaceutical Interventions

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper studies a two-scales Markov compartmental model (SIRS) with demography, vaccination, reinfections and waning immunity, and with external control inputs of pharmaceutical (vaccination) and non-pharmaceutical (social distancing) type. The demography events are considered to be rare and contribute to a jump mechanism with trajectory depending jump intensity ultimately providing a piecewise deterministic Markov model. We study well-posedness of the system with time-varying total population and the herd immunity zone when intensive care units constraints are enforced. The third contribution describes, via Zubov’s method, the initial configurations that can be driven to the immunity zone. Numeric illustrations are provided using data from INSEE (France) on COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available from INSEE (Institut national de la statistique et des études économiques) at https://www.insee.fr/fr/statistiques/. under the references: 2381380, 2383440.

Notes

  1. This value is obtained by averaging over 2020–2021 period.

  2. This value is obtained by averaging over 2017–2019 period prior to the epidemics.

  3. This value is obtained by averaging over 2020–2021 period from which the previous \(\mu _-\) is substracted.

  4. The continuity of \(\hat{Q}\) is also true, but this condition on \(\hat{\lambda } \hat{Q}\) suffices for the constructions, see also [21, Remark 1].

References

  1. Alvarez, F.E., Argente, D., Lippi, F.: A simple planning problem for covid-19 lockdown. Technical report, National Bureau of Economic Research (2020)

  2. Ames, A.D., Molnár, T.G., Singletary, A.W., Orosz, G.: Safety-critical control of active interventions for COVID-19 mitigation. IEEE Access 8, 188454–188474 (2020)

    Article  Google Scholar 

  3. Anderson, R.M., Anderson, B., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  4. Avram, F., Freddi, L., Goreac, D.: Optimal control of a SIR epidemic with ICU constraints and target objectives. Appl. Math. Comput. 418, 126816 (2022)

    MathSciNet  Google Scholar 

  5. Behncke, H.: Optimal control of deterministic epidemics. Opt. Control Appl. Methods 21(6), 269–285 (2000)

    Article  MathSciNet  Google Scholar 

  6. Bolzoni, L., Bonacini, E., Della Marca, R., Groppi, M.: Optimal control of epidemic size and duration with limited resources. Math. Biosci. 315, 108232 (2019)

    Article  MathSciNet  Google Scholar 

  7. Britton, T., Leskelä, L.: Optimal intervention strategies for minimizing total incidence during an epidemic. SIAM J. Appl. Math. 83(2), 354–373 (2022)

    Article  MathSciNet  Google Scholar 

  8. Camilli, F., Grüne, L.: Characterizing attraction probabilities via the stochastic Zubov equation. Discrete Contin. Dyn. Syst. B 3(3), 457–468 (2003)

    MathSciNet  Google Scholar 

  9. Caraballo, T., Colucci, R.: A comparison between random and stochastic modeling for a SIR model. Commun. Pure Appl. Anal. 16(1), 151–162 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cori, A., Ferguson, N.M., Fraser, C., Cauchemez, S.: A new framework and software to estimate time-varying reproduction numbers during epidemics. Am. J. Epidemiol. 178(9), 1505–1512 (2013)

    Article  Google Scholar 

  11. Crudu, A., Debussche, A., Muller, A., Radulescu, O.: Convergence of stochastic gene networks to hybrid piecewise deterministic processes. Ann. Appl. Prob. 22(5), 1822–1859 (2012)

    Article  MathSciNet  Google Scholar 

  12. Davis, M.H.A.: Piecewise-deterministic Markov-processes: a general-class of non-diffusion stochastic-models. J. R. Stat. Soc. Ser. B 46(3), 353–388 (1984)

    Google Scholar 

  13. Davis, M.H.A.: Control of Piecewise-deterministic processes via discrete-time dynamic-programming. Lect. Notes Control Inf. Sci. 78, 140–150 (1986)

    MathSciNet  Google Scholar 

  14. Davis, M.H.A.: Markov Models and Optimization. Monographs on Statistics and Applied Probability, Chapman & Hall, London (1993)

    Book  Google Scholar 

  15. Esterhuizen, W., Lévine, J., Streif, S.: Epidemic management with admissible and robust invariant sets. PLoS ONE 16(9), 1–28 (2021)

    Article  Google Scholar 

  16. Flannery, D.D., Gouma, S., Dhudasia, M.B., Mukhopadhyay, S., Pfeifer, M.R., Woodford, E.C., Triebwasser, J.E., Gerber, J.S., Morris, J.S., Weirick, M.E., McAllister, C.M., Bolton, M.J., Arevalo, C.P., Anderson, E.M., Goodwin, E.C., Hensley, S.E., Puopolo, K.M.: Assessment of maternal and neonatal cord blood SARS-CoV-2 antibodies and placental transfer ratios. JAMA Pediatr. 175(6), 594–600 (2021)

    Article  Google Scholar 

  17. Freddi, L.: Optimal control of the transmission rate in compartmental epidemics. Math. Control Relat. Fields 12(1), 201–223 (2022)

    Article  MathSciNet  Google Scholar 

  18. Freddi, L., Goreac, D., Li, J., Boxiang, X.: SIR epidemics with state-dependent costs and ICU constraints: a Hamilton–Jacobi verification argument and dual LP algorithms. Appl. Math. Optim. 86(2), 23 (2022)

    Article  MathSciNet  Google Scholar 

  19. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  20. Goreac, D.: Viability, invariance and reachability for controlled piecewise deterministic markov processes associated to gene networks. ESAIM-Control Optim. Calc. Var. 18(2), 401–426 (2012)

    Article  MathSciNet  Google Scholar 

  21. Goreac, D., Serea, O.-S.: Linearization techniques for controlled piecewise deterministic Markov processes; application to Zubov’s method. Appl. Math. Optim. 66, 209–238 (2012). https://doi.org/10.1007/s00245-012-9169-x

    Article  MathSciNet  Google Scholar 

  22. Grüne, L., Picarelli, A.: Zubov’s method for controlled diffusions with state constraints. Nonlinear Differ. Equ. Appl. NoDEA 22(6), 1765–1799 (2015)

    Article  MathSciNet  Google Scholar 

  23. Hansen, E., Day, T.: Optimal control of epidemics with limited resources. J. Math. Biol. 62(3), 423–451 (2011)

    Article  MathSciNet  Google Scholar 

  24. Hernández-Vargas, E.A., González, A.H., Beck, C.L., Bi, X., Campana, F.C., Giordano, G.: Modelling and control of epidemics across scales. 2022 In: IEEE 61st Conference on Decision and Control (CDC), pp. 4963–4980 (2022)

  25. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115(772), 700–721 (1927)

    Article  Google Scholar 

  26. Ketcheson, D.I.: Optimal control of an SIR epidemic through finite-time non-pharmaceutical intervention. J. Math. Biol. 7, 83 (2020)

    Google Scholar 

  27. Kloeden, P.E., Kozyakin, V.: The dynamics of epidemiological systems with nonautonomous and random coefficients. Math. Eng. Sci. Aerosp. 2(2), 105–118 (2011)

    Google Scholar 

  28. Knight, Ronald A.: Zubov’s condition revisited. Proc. Edinb. Math. Soc. 26(2), 253–257 (1983)

    Article  MathSciNet  Google Scholar 

  29. Kruse, T., Strack, P.: Optimal control of an epidemic through social distancing. Cowles Foundation Discussion Papers 2229, Cowles Foundation for Research in Economics, Yale University (2020)

  30. Li, D., Liu, S., Cui, J.: Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching. J. Differ. Equ. 263(12), 8873–8915 (2017)

    Article  MathSciNet  Google Scholar 

  31. Lin, Y., Zhao, Y.: Exponential ergodicity of a regime-switching SIS epidemic model with jumps. Appl. Math. Lett. 94, 133–139 (2019)

    Article  MathSciNet  Google Scholar 

  32. Martcheva, M.: An Introduction to Mathematical Epidemiology, vol. 16. Springer, New York (2015)

    Book  Google Scholar 

  33. Molina, E., Rapaport, A.: An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint. Automatica 146, 110596 (2022)

    Article  MathSciNet  Google Scholar 

  34. Riedler, M.G.: Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes. J. Comput. Appl. Math. 239, 50–71 (2013)

    Article  MathSciNet  Google Scholar 

  35. Sauerteig, P., Esterhuizen, W., Wilson, M., Ritschel, T.K.S., Worthmann, K., Streif, S.: Model predictive control tailored to epidemic models. In: 2022 European Control Conference (ECC), pp. 743–748 (2022)

  36. Zhang, X., Wang, K.: Stochastic SIR model with jumps. Appl. Math. Lett. 26(8), 867–874 (2013)

    Article  MathSciNet  Google Scholar 

  37. Zubov, V.I.: Methods of A. M. Lyapunov and their application. In: Boron, L.F. (ed.) Translation Prepared Under the Auspices of the United States Atomic Energy Commission. P. Noordhoff Ltd, Groningen (1964)

    Google Scholar 

Download references

Funding

The authors acknowledge support from the NSF of Shandong Province (NO. ZR202306020015), the National Key R and D Program of China (NO. 2018YFA0703900), and the NSF of P.R. China (NO. 12031009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Goreac or Juan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

The work presented here has not been published previously, it is not under consideration for publication elsewhere. The publication is approved by all authors and by the responsible authorities where the work was carried out. If accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goreac, D., Li, J., Wang, Y. et al. Return-to-Normality in a Piecewise Deterministic Markov SIR+V Model with Pharmaceutical and Non-pharmaceutical Interventions. Appl Math Optim 89, 19 (2024). https://doi.org/10.1007/s00245-023-10087-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10087-1

Keywords

Navigation