Skip to main content
Log in

The Cost of Null Controllability for a Backward Stochastic Degenerate Parabolic Equation in the Vanishing Viscosity Limit

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we investigate the cost of null controllability for a backward stochastic degenerate parabolic equation with a boundary control in the vanishing viscosity limit. Firstly we obtain a new Carleman estimate for the adjoint stochastic equation. Combining this Carleman estimate and an exponential dissipation estimate, we obtain the uniform null controllability for large control time. When the waiting time tends to 0, we prove that the cost of null controllability increases to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G.: Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6, 161–204 (2006)

    Article  MathSciNet  Google Scholar 

  2. Barbu, V., Răscanu, A., Tessitore, G.: Carleman estimate and controllability of linear stochastic heat equations. Appl. Math. Optim. 47, 97–120 (2003)

    Article  MathSciNet  Google Scholar 

  3. Cannarsa, P., Martinez, P., Vancostenoble, J.: Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control. Optim. 47, 1–19 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cannarsa, P., Martinez, P., Vancostenoble, J.: Carleman estimates and null controllability for boundary-degenerate parabolic operators. C. R. Math. Acad. Sci. Paris 347, 147–152 (2009)

    Article  MathSciNet  Google Scholar 

  5. Cannarsa, P., Martinez, P., Vancostenoble, J.: Global Carleman estimates for degenerate parabolic operators with applications. Mem. Am. Math. Soc. 239, 1133 (2016)

    MathSciNet  Google Scholar 

  6. Carreño, N., Guerrero, S.: On the non-uniform null controllability of a linear KdV equation. Asymptot. Anal. 94, 33–69 (2015)

    MathSciNet  Google Scholar 

  7. Carreño, N., Guzmán, P.: On the cost of null controllability of a fourth-order parabolic equation. J. Differ. Equ. 261, 6485–6520 (2016)

    Article  MathSciNet  Google Scholar 

  8. Coron, J.M., Guerrero, S.: Singular optimal control: a linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44, 237–257 (2005)

    MathSciNet  Google Scholar 

  9. Du, R.: Null controllability for a class of degenerate parabolic equations with gradient terms. J. Evol. Equ. 19, 585–613 (2019)

    Article  MathSciNet  Google Scholar 

  10. Gao, P.: Carleman estimate and unique continuation property for the linear stochastic Korteweg-de Vries equation. Bull. Aust. Math. Soc. 90, 283–294 (2014)

    Article  MathSciNet  Google Scholar 

  11. Gao, P., Chen, M., Li, Y.: Observability estimates and null controllability for forward and backward linear stochastic Kuramoto-Sivashinsky equations. SIAM J. Control. Optim. 53, 475–500 (2015)

    Article  MathSciNet  Google Scholar 

  12. Glass, O., Guerrero, S.: Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60, 61–100 (2008)

    MathSciNet  Google Scholar 

  13. Glass, O., Guerrero, S.: Uniform controllability of a transport equation in zero diffusion-dispersion limit. Math. Models Methods Appl. Sci. 19, 1567–1601 (2009)

    Article  MathSciNet  Google Scholar 

  14. Guerrero, S., Lebeau, G.: Singular optimal control for a transport-diffusion equation. Commun. Partial Differ. Equ. 32, 1813–1836 (2007)

    Article  MathSciNet  Google Scholar 

  15. Gueye, M.: Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations. SIAM J. Control. Optim. 52, 2037–2054 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gueye, M., Lissy, P.: Singular optimal control of a 1-D parabolic-hyperbolic degenerate equation. ESAIM Control Optim. Calc. Var. 22, 1184–1203 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kassab, K.: Uniform controllability of a transport equation in zero fourth order equation-dispersion limit. hal-03080969 (2020)

  18. Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations. J. Sov. Math. 16, 1233–1277 (1981)

    Article  Google Scholar 

  19. Lissy, P.: Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation. J. Differ. Equ. 259, 5331–5352 (2015)

    Article  MathSciNet  Google Scholar 

  20. Liu, X.: Global Carleman estimates for stochastic parabolic equations and its application. ESAIM Control Optim. Calc. Var. 20, 823–839 (2014)

    Article  MathSciNet  Google Scholar 

  21. Liu, X., Yu, Y.: Carleman estimates of some stochastic degenerate parabolic equations and application. SIAM J. Control. Optim. 57, 3527–3552 (2019)

    Article  MathSciNet  Google Scholar 

  22. Lü, Q.: Some results on the controllability of forward stochastic heat equations with control on the drift. J. Funct. Anal. 260, 832–851 (2011)

    Article  MathSciNet  Google Scholar 

  23. Lü, Q.: Observability estimate for stochastic Schrödinger equations and its applications. SIAM J. Control. Optim. 51, 121–144 (2013)

    Article  MathSciNet  Google Scholar 

  24. Lü, Q.: Exact controllability for stochastic transport equations. SIAM J. Control. Optim. 52, 397–419 (2014)

    Article  MathSciNet  Google Scholar 

  25. Lü, Q., Zhang, X.: Control theory for stochastic distributed parameter systems, an engineering perspective. Annu. Rev. Control. 51, 268–330 (2021)

    Article  MathSciNet  Google Scholar 

  26. Opic, B., Kufner, A.: Hardy-Type Inequalities. Halsted Press, Ultimo (1990)

    Google Scholar 

  27. Tang, S., Zhang, X.: Null controllability for forward and backward stochastic parabolic equations. SIAM J. Control. Optim. 48, 2191–2216 (2009)

    Article  MathSciNet  Google Scholar 

  28. Wang, C., Du, R.: Carleman estimates and null controllability for a class of degenerate parabolic equations with convection terms. SIAM J. Control. Optim. 52, 1457–1480 (2014)

    Article  MathSciNet  Google Scholar 

  29. Wang, C., Zhou, Y., Du, R., Liu, Q.: Carleman estimate for solutions to a degenerate convection-diffusion equation. Discret. Contin. Dyn. Syst. Ser B 23, 4207–4222 (2018)

    MathSciNet  Google Scholar 

  30. Wu, B., Chen, Q., Wang, Z.: Carleman estimates for a stochastic degenerate parabolic equation and applications to null controllability and an inverse random source problem. Inverse Probl. 36, 075014 (2020)

    Article  MathSciNet  Google Scholar 

  31. Yan, Y.: Carleman estimates for stochastic parabolic equations with Neumann boundary conditions and applications. J. Math. Anal. Appl. 457, 248–742 (2018)

    Article  MathSciNet  Google Scholar 

  32. Zhang, X.: Carleman and observability estimates for stochastic wave equations. SIAM J. Math. Anal. 40, 851–868 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank all the anonymous referees for their valuable suggestions and comments, which make the paper much improved.

Funding

This work is supported by NSFC (No.12171248)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix is devoted to proving Lemma 2.1.

Proof of Lemma 2.1

Notice that \(\theta =e^l\), \(l=s\varphi \) and \(p=e^\zeta \theta z\). It is easy to verify that

$$\begin{aligned} e^\zeta \theta \textrm{d}z=\textrm{d}p-l_t p\textrm{d}t, \end{aligned}$$
(A.1)

and

$$\begin{aligned} \varepsilon e^\zeta \theta (x^\alpha z_x)_x\textrm{d}t=&\left[ \varepsilon e^\zeta (e^{-\zeta } x^\alpha p_x)_x-\varepsilon e^\zeta (e^{-\zeta } x^\alpha l_x)_x p-2\varepsilon x^\alpha l_x p_x\right. \nonumber \\&\left. +\varepsilon x^\alpha l_x^2 p-\varepsilon e^\zeta \theta (x^\alpha \zeta _x z)_x\right] \textrm{d}t. \end{aligned}$$
(A.2)

Noting that \(x^\alpha \zeta _x=-\frac{M}{\varepsilon } \), we then obtain

$$\begin{aligned}&e^\zeta \theta \left[ \textrm{d}z-\varepsilon (x^\alpha z_x)_x\textrm{d}t+M z_x\textrm{d}t\right] \nonumber \\&\quad = \textrm{d}p+\varepsilon e^\zeta (e^{-\zeta } x^\alpha l_x)_x p\textrm{d}t+2\varepsilon x^\alpha l_x p_x\textrm{d}t\nonumber \\&\qquad +\left[ -\varepsilon e^\zeta (e^{-\zeta } x^\alpha p_x)_x-\varepsilon x^\alpha l_x^2 p-l_t p\right] \textrm{d}t. \end{aligned}$$
(A.3)

Therefore,

$$\begin{aligned}&\theta \left[ -\varepsilon e^\zeta (e^{-\zeta } x^\alpha p_x)_x-\varepsilon x^\alpha l_x^2 p-l_t p\right] \left[ \textrm{d}z-\varepsilon (x^\alpha z_x)_x\textrm{d}t+Mz_x\textrm{d}t\right] \nonumber \\&\quad = e^{-\zeta }\left[ -\varepsilon e^\zeta (e^{-\zeta } x^\alpha p_x)_x-\varepsilon x^\alpha l_x^2 p-l_t p\right] \textrm{d}p\nonumber \\&\qquad +\varepsilon \left[ -\varepsilon e^\zeta (e^{-\zeta } x^\alpha p_x)_x-\varepsilon x^\alpha l_x^2 p-l_t p\right] (e^{-\zeta } x^\alpha l_x)_x p\textrm{d}t\nonumber \\&\qquad +2\varepsilon e^{-\zeta }\left[ -\varepsilon e^\zeta (e^{-\zeta } x^\alpha p_x)_x-\varepsilon x^\alpha l_x^2 p-l_t p\right] x^\alpha l_x p_x\textrm{d}t\nonumber \\&\qquad +e^{-\zeta }\left[ -\varepsilon e^\zeta (e^{-\zeta } x^\alpha p_x)_x-\varepsilon x^\alpha l_x^2 p-l_t p\right] ^2\textrm{d}t. \end{aligned}$$
(A.4)

Now we deal with the first three terms on the right-hand side of (A.4) one by one. For the first term, applying Itô’s formula, we have

$$\begin{aligned}&e^{-\zeta }\left[ -\varepsilon e^\zeta (e^{-\zeta }x^\alpha p_x)_x-\varepsilon x^\alpha l_x^2 p-l_t p\right] \textrm{d}p\nonumber \\&\quad = -(\varepsilon e^{-\zeta }x^\alpha p_x\textrm{d}p )_x+\textrm{d}\left( \frac{1}{2}\varepsilon e^{-\zeta }x^\alpha p_x^2\right) -\frac{1}{2}\varepsilon e^{-\zeta }x^\alpha (\textrm{d}p_x)^2\nonumber \\&\qquad -\textrm{d}\left( \frac{1}{2}\varepsilon e^{-\zeta } x^\alpha l_x^2 p^2\right) +\varepsilon e^{-\zeta } x^\alpha l_x l_{xt} p^2\textrm{d}t+\frac{1}{2}\varepsilon e^{-\zeta } x^\alpha l_x^2 (\textrm{d}p)^2\nonumber \\&\qquad -\textrm{d}\left( \frac{1}{2} e^{-\zeta } l_t p^2\right) +\frac{1}{2} e^{-\zeta } l_{tt} p^2\textrm{d}t+\frac{1}{2} e^{-\zeta } l_t(\textrm{d} p)^2. \end{aligned}$$
(A.5)

The second one can be rewritten as

$$\begin{aligned}&\varepsilon \left[ -\varepsilon e^\zeta (e^{-\zeta } x^\alpha p_x)_x-\varepsilon x^\alpha l_x^2 p-l_t p\right] (e^{-\zeta } x^\alpha l_x)_x p\textrm{d}t\nonumber \\&\quad = \left[ -\varepsilon ^2 (e^{-\zeta }x^\alpha l_x)_x x^\alpha p p_x \right] _x\textrm{d}t+\varepsilon ^2 e^{-\zeta } x^\alpha \left[ e^\zeta (e^{-\zeta }x^\alpha l_x)_x p\right] _x p_x\textrm{d}t \nonumber \\&\qquad -\varepsilon ^2 (e^{-\zeta } x^\alpha l_x)_x x^{\alpha } l_x^2 p^2\textrm{d}t-\varepsilon (e^{-\zeta } x^\alpha l_x)_x l_t p^2\textrm{d}t\nonumber \\&\quad = \left[ -\varepsilon ^2 (e^{-\zeta }x^\alpha l_x)_x x^\alpha p p_x \right] _x\textrm{d}t+\varepsilon ^2 (e^{-\zeta }x^\alpha l_x)_x x^\alpha p_x^2\textrm{d}t\nonumber \\&\qquad +\frac{1}{2} \varepsilon ^2e^{-\zeta }x^\alpha \left[ e^\zeta (e^{-\zeta }x^\alpha l_x)_x \right] _x (p^2)_x\textrm{d}t-\varepsilon ^2 (e^{-\zeta }x^\alpha l_x)_x x^{\alpha } l_x^2 p^2\textrm{d}t \nonumber \\&\qquad -\varepsilon (e^{-\zeta } x^\alpha l_x)_x l_t p^2\textrm{d}t\nonumber \\&\quad = \left[ -\varepsilon ^2 (e^{-\zeta }x^\alpha l_x)_x x^\alpha p p_x \right] _x\textrm{d}t+\varepsilon ^2 (e^{-\zeta }x^\alpha l_x)_x x^\alpha p_x^2\textrm{d}t\nonumber \\&\qquad +\left\{ \frac{1}{2}\varepsilon ^2 e^{-\zeta }x^\alpha \left[ e^\zeta (e^{-\zeta }x^\alpha l_x)_x \right] _x p^2\right\} _x\textrm{d}t-\frac{1}{2} \varepsilon ^2 \left\{ e^{-\zeta } x^\alpha \left[ e^\zeta (e^{-\zeta }x^\alpha l_x)_x \right] _x \right\} _x p^2 \textrm{d}t\nonumber \\&\qquad -\varepsilon ^2 (e^{-\zeta } x^\alpha l_x)_x x^{\alpha } l_x^2 p^2\textrm{d}t-\varepsilon (e^{-\zeta } x^\alpha l_x)_x l_t p^2\textrm{d}t. \end{aligned}$$
(A.6)

For the last one, we have

$$\begin{aligned}&2\varepsilon e^{-\zeta }\left[ -\varepsilon e^\zeta ( e^{-\zeta } x^\alpha p_x)_x-\varepsilon x^\alpha l_x^2 p-l_t p\right] x^\alpha l_x p_x\textrm{d}t\nonumber \\&\quad = -2\varepsilon ^2 \left[ (e^{-\zeta } x^\alpha )_x p_x+ e^{-\zeta }x^\alpha p_{xx}\right] x^\alpha l_x p_x\textrm{d}t-\varepsilon ^2 e^{-\zeta }x^{2\alpha } l_x^3 (p^2)_x\textrm{d}t\nonumber \\&\qquad -\varepsilon e^{-\zeta }x^\alpha l_xl_t (p^2)_x\textrm{d}t\nonumber \\&\quad = -\varepsilon ^2 (e^{-\zeta } x^\alpha )_x x^\alpha l_x p_x^2\textrm{d}t-\left( \varepsilon ^2 e^{-\zeta } x^{2\alpha } l_x p_x^2\right) _x\textrm{d}t+\varepsilon ^2 e^{-\zeta } x^\alpha (x^\alpha l_x)_x p_x^2\textrm{d}t\nonumber \\&\qquad -\left( \varepsilon ^2 e^{-\zeta } x^{2\alpha } l_x^3 p^2\right) _x\textrm{d}t+\varepsilon ^2 \left( e^{-\zeta } x^{2\alpha } l_x^3\right) _x p^2\textrm{d}t-(\varepsilon e^{-\zeta } x^\alpha l_xl_t p^2)_x \textrm{d}t\nonumber \\&\qquad +\varepsilon \left( e^{-\zeta } x^\alpha l_x l_t\right) _x p^2\textrm{d}t. \end{aligned}$$
(A.7)

Finally, by substituting (A.5)–(A.7) into (A.4), we arrive at the desired equality (2.4). This completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wu, B. The Cost of Null Controllability for a Backward Stochastic Degenerate Parabolic Equation in the Vanishing Viscosity Limit. Appl Math Optim 89, 20 (2024). https://doi.org/10.1007/s00245-023-10091-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10091-5

Keywords

Mathematics Subject Classification

Navigation