Skip to main content
Log in

Perturbation theory of transverse modes in the off-axis pumping cavity

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Off-axis pumping scheme has been widely used in experiments to generate high-order transverse modes, and how to characterize the evolution principle of transverse modes in the off-axis pumping cavity has received widespread attention. In the present paper, we introduce an operator to convert the diffraction integral equation into the eigenequation and then exploit the perturbation theory of the eigenequation to perform a theoretical analysis for exploring the influence of off-axis pumping on transverse modes. Using operator, we can calculate the eigenequation of the off-axis pumping cavity without complicated integral calculation. Theoretical analysis shows that off-axis pumping can increase and decrease the order of transverse mode. It can provide a complete theoretical model for the off-axis pumping experiment and explain the phenomena in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, J.P. Woerdman, Opt. Commun. 96, 123 (1993)

    Article  ADS  Google Scholar 

  2. S. Habraken, G. Nienhuis, Proceedings of SPIE (2008)

  3. T.H. Lu, Y.C. Lin, Y.F. Chen, K.F. Huang, Appl. Phys. B 103, 991 (2010)

    Article  ADS  Google Scholar 

  4. S.-C. Chu, C.-S. Yang, K. Otsuka, Opt. Express 16, 19934 (2008)

    Article  ADS  Google Scholar 

  5. M.A. Bandres, Opt. Lett. 29, 1724 (2004)

    Article  ADS  Google Scholar 

  6. K. Chen, L. Xu, A. Ni, J. Tang, K. Yin, F. Jia, K. Li, D. Qiao, N. Copner, Opt. Lett. 48, 2599 (2023)

    Article  ADS  Google Scholar 

  7. J. Lega, J.V. Moloney, A.C. Newell, Physica D 83, 478 (1995)

    Article  ADS  Google Scholar 

  8. K. Staliūnas, C.O. Weiß, Phys. D: Nonlinear Phenom. 81, 79 (1995)

    Article  ADS  Google Scholar 

  9. D.J. Newman, S.P. Morgan, Bell Syst. Tech. J. 43, 113 (1964)

    Article  Google Scholar 

  10. Y. Shen, Y. Meng, X. Fu, M. Gong, Opt. Lett. 43, 291 (2018)

    Article  ADS  Google Scholar 

  11. M.A. Bandres, J.C. Gutiérrez-Vega, J. Opt. Soc. Am. 21, 873 (2004)

    Article  ADS  Google Scholar 

  12. Z. Zhang, C. Zhao, Phys. Rev. Appl. 13, 054049 (2020)

    Article  ADS  Google Scholar 

  13. S. Zhang, P. Li, S. Wang, J. Tan, G. Feng, S. Zhou, Laser Phys. Lett. 16, 035302 (2019)

    Article  ADS  Google Scholar 

  14. P.H. Tuan, Y.H. Hsieh, Y.-H. Lai, K.-F. Huang, Y.-F. Chen, Opt. Express 26, 20481 (2018)

    Article  ADS  Google Scholar 

  15. T. Ohtomo, S.-C. Chu, K. Otsuka, Opt. Express 16, 5082 (2008)

    Article  ADS  Google Scholar 

  16. S.-C. Chu, Y.-T. Chen, K.-F. Tsai, K. Otsuka, Opt. Express 20, 7128 (2012)

    Article  ADS  Google Scholar 

  17. J. Xin, M. Dong, X. Lou, L. Zhu, Opt. Quant. Electron. 50, 1–11 (2018)

    Article  ADS  Google Scholar 

  18. Y. Kozawa, K. Yonezawa, S. Sato, 2007 Conference on Lasers and Electro-Optics (CLEO) (2007)

  19. B. Ndagano, B. Perez-Garcia, F.S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R.I. Hernandez-Aranda, T. Konrad, A. Forbes, Nat. Phys. 13, 397 (2017)

    Article  Google Scholar 

  20. D.G. Grier, Nature 424, 810 (2003)

    Article  ADS  Google Scholar 

  21. H. Laabs, B. Ozygus, Opt. Laser Technol. 28, 213 (1996)

    Article  ADS  Google Scholar 

  22. Y.F. Chen, T. Huang, C.F. Kao, C.L. Wang, S.C. Wang, IEEE J. Quantum Electron. 33, 1025 (1997)

    Article  ADS  Google Scholar 

  23. S. Wang, S. Zhang, H. Qiao, P. Li, M. Hao, H. Yang, J. Xie, G. Feng, S. Zhou, Opt. Express 26, 26925 (2018)

    Article  ADS  Google Scholar 

  24. Y.-F. Chen, Y.-P. Lan, J. Opt. 3, 146 (2001)

    Google Scholar 

  25. N. Li, B. Xu, S. Cui, X. Qiu, Z. Luo, H. Xu, L. Chen, R. Moncorgé, IEEE Photonics Technol. Lett. 31, 1457 (2019)

    Article  ADS  Google Scholar 

  26. Y.-F. Chen, J.C. Tung, P.Y. Chiang, H.C. Liang, K.-F. Huang, Phys. Rev. A 88, 013827 (2013)

    Article  ADS  Google Scholar 

  27. T. Lian, K. Kou, J. Liu, J. Wei, Y. Liu, J. Xing, M. Jiao, Opt. Commun. 478, 126406 (2021)

    Article  Google Scholar 

  28. M. Vallet, M. Brunel, G. Ropars, A. Le Floch, F. Bretenaker, Phys. Rev. A 56, 5121 (1997)

    Article  ADS  Google Scholar 

  29. A.G. Fox, T. Li, Proc. IEEE 51, 80–89 (1963)

    Article  Google Scholar 

  30. G.D. Boyd, J.I. Gordon, Bell Syst. Tech. J. 40, 489 (1961)

    Article  Google Scholar 

  31. D. Slepian, H.O. Pollak, Bell Syst. Tech. J. 40, 43 (1961)

    Article  Google Scholar 

  32. G.D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41, 1347 (1962)

    Article  Google Scholar 

  33. Y. Shen, Z. Wan, X. Fu, Q. Liu, M. Gong, J. Opt. Soc. Am. B Opt. Phys. 35, 2940 (2018)

    Article  ADS  Google Scholar 

  34. Y.-F. Chen, T. Huang, K. Lin, C.F. Kao, C.L. Wang, S.C. Wang, Opt. Commun. 136, 399 (1997)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (61975208, 51761135115, and 62105334), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (YZLY202001), Youth Innovation Promotion Association CAS (2022303), Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZR203, 2020ZZ108 and 2021ZZ118), and the Project of Science and Technology of Fujian Province (2021H0047) for their support in this research.

Author information

Authors and Affiliations

Authors

Contributions

SS conceptualization (lead); data curation (lead); formal analysis (lead); methodology (equal); writing—original draft (lead); writing—review and editing (equal). WL writing—review and editing (equal). BL: methodology (equal); resources (equal); writing—review and editing (equal). GZ conceptualization (equal); supervision (lead); funding acquisition (lead); project administration (equal); writing—review and editing (equal).

Corresponding author

Correspondence to Bingxuan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Liao, W., Li, B. et al. Perturbation theory of transverse modes in the off-axis pumping cavity. Appl. Phys. B 130, 16 (2024). https://doi.org/10.1007/s00340-023-08153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08153-1

Navigation