Skip to main content
Log in

DWELL InAs quantum-dot VCSEL noise behavior promotion subjected to optical injection locking

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The noise behavior of optical devices plays a niche role in pursuing and realizing ultra-high efficient all-optical state-of-the-art applications. So, analyzing and enhancing relative intensity noise (RIN) has particular importance to all optical applications. This study utilized a self-consistent numerical calculation to investigate a 1300nm dot-in-a-well (DWELL) quantum-dot (QD) vertical-cavity surface-emitting laser (VCSEL) under optical injection locking (OIL). We investigated the impact of OIL and homogeneous broadening on the main operational characteristics of QD VCSEL, considering output power, optical gain, temperature, and carrier quantum efficiency. In addition, the noise behavior was comprehensively studied by calculating the RIN spectra and RIN response to injection current density. Furthermore, this paper discusses the necessary scrutinization of simulated characteristics in terms of phenomenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this paper and on a request from the corresponding author.

References

  1. S. Mishra, A.K. Singh, Optical sensors for water and humidity and their further applications. Coord. Chem. Rev. 445, 214063 (2021)

    Article  Google Scholar 

  2. A. Lesiak, K. Drzozga, J. Cabaj, M. Bański, K. Malecha, A. Podhorodecki, Optical sensors based on II–VI quantum dots. Nanomaterials 9(2), 192 (2019)

    Article  Google Scholar 

  3. C.A. Werley, S. Boccardo, A. Rigamonti, E.M. Hansson, A.E. Cohen, Multiplexed optical sensors in arrayed islands of cells for multimodal recordings of cellular physiology. Nat. Commun. 11(1), 1–17 (2020)

    Article  Google Scholar 

  4. M.D. Tran, H. Kim, J.S. Kim, M.H. Doan, T.K. Chau, Q.A. Vu, J.H. Kim, Y.H. Lee, Two-terminal multibit optical memory via van der Waals heterostructure. Adv. Mater. 31(7), 1807075 (2019)

    Article  Google Scholar 

  5. Y. Sun, Y. Ding, D. Xie, M. Sun, J. Xu, P. Yang, Y. Zhang, T. Ren, Reconfigurable optical memory based on MoS2/QDs mixed-dimensional van der Waals heterostructure. 2D Mater. 8(2), 025021 (2021)

    Article  Google Scholar 

  6. T. Alexoudi, G.T. Kanellos, N. Pleros, Optical RAM and integrated optical memories: a survey. Light Sci. Appl. 9(1), 1–16 (2020)

    Article  Google Scholar 

  7. Y. Wu, M.R. Ali, K. Chen, N. Fang, M.A. El-Sayed, Gold nanoparticles in biological optical imaging. Nano Today 24, 120–140 (2019)

    Article  Google Scholar 

  8. F. Mohandes, H. Dehghani, S. Angizi, A. Ramedani, B. Dolatyar, M.R. Farani, K. Müllen, A. Simchi, Magneto-fluorescent contrast agents based on carbon Dots@ Ferrite nanoparticles for tumor imaging. J. Magn. Magn. Mater. 561, 169686 (2022)

    Article  Google Scholar 

  9. V. Perumal, P.M. Sivakumar, A. Zarrabi, S. Muthupandian, S. Vijayaraghavalu, K. Sahoo, A. Das, S. Das, S.S. Payyappilly, S. Das, Near infra-red polymeric nanoparticle based optical imaging in cancer diagnosis. J. Photochem. Photobiol. B. 199, 111630 (2019)

    Article  Google Scholar 

  10. Q. Miao, K. Pu, Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater. 30(49), 1801778 (2018)

    Article  Google Scholar 

  11. C. Bruschini, H. Homulle, I.M. Antolovic, S. Burri, E. Charbon, Single-photon avalanche diode imagers in biophotonics: review and outlook. Light Sci. Appl. 8(1), 1–28 (2019)

    Article  Google Scholar 

  12. I.G. Koryakina, P.K. Afonicheva, K.V. Arabuli, A.A. Evstrapov, A.S. Timin, M.V. Zyuzin, Microfluidic synthesis of optically responsive materials for nano-and biophotonics. Adv. Colloid Interface Sci. 298, 102548 (2021)

    Article  Google Scholar 

  13. E. Veisi, M. Seifouri, S. Olyaee, Design and numerical analysis of multifunctional photonic crystal logic gates. Opt. Laser Technol. 151, 108068 (2022)

    Article  Google Scholar 

  14. D.G.S. Rao, S. Swarnakar, S. Kumar, Performance analysis of all-optical NAND, NOR, and XNOR logic gates using photonic crystal waveguide for optical computing applications. Opt. Eng. 59(5), 057101 (2020)

    ADS  Google Scholar 

  15. D.E. Fouskidis, K.E. Zoiros, A. Hatziefremidis, Reconfigurable all-optical logic gates (AND, NOR, NOT, OR) with quantum-dot semiconductor optical amplifier and optical filter. IEEE J. Sel. Top. Quantum Electron. 27(2), 1–15 (2020)

    Article  Google Scholar 

  16. A. Alquliah, A. Kotb, S.C. Singh, C. Guo, All-optical AND, NOR, and XNOR logic gates using semiconductor optical amplifiers-based Mach–Zehnder interferometer followed by a delayed interferometer. Optik 225, 165901 (2021)

    Article  ADS  Google Scholar 

  17. S. Xiang, Z. Ren, Z. Song, Y. Zhang, X. Guo, G. Han, Y. Hao, Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans. Neural Netw. Learn. Syst. 32(6), 2494–2505 (2020)

    Article  Google Scholar 

  18. S. Xiang, Y. Zhang, J. Gong, X. Guo, L. Lin, Y. Hao, STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J. Sel. Top. Quantum Electron. 25(6), 1–9 (2019)

    Article  Google Scholar 

  19. M.U. Hadi, M. Awais, M. Raza, K. Khurshid, H. Jung, Neural network DPD for aggrandizing SM-VCSEL-SSMF-based radio over fiber link performance. Photonics 8, 1–19 (2021)

    Article  Google Scholar 

  20. S. Oh, M. Yu, S. Cho, S. Noh, H. Chun, Bi-LSTM-augmented deep neural network for multi-Gbps VCSEL-based visible light communication link. Sensors 22(11), 4145 (2022)

    Article  ADS  Google Scholar 

  21. Z. Song, S. Xiang, Z. Ren, G. Han, Y. Hao, Spike sequence learning in a photonic spiking neural network consisting of VCSELs-SA with supervised training. IEEE J. Sel. Top. Quantum Electron. 26(5), 1–9 (2020)

    Article  Google Scholar 

  22. J. Robertson, P. Kirkland, J.A. Alanis, M. Hejda, J. Bueno, G. Di Caterina, A. Hurtado, Ultrafast neuromorphic photonic image processing with a VCSEL neuron. Sci. Rep. 12(1), 1–10 (2022)

    Article  Google Scholar 

  23. S. Xiang, Y. Han, Z. Song, X. Guo, Y. Zhang, Z. Ren, S. Wang, Y. Ma, W. Zou, B. Ma, A review: photonics devices, architectures, and algorithms for optical neural computing. J. Semicond. 42(2), 023105 (2021)

    Article  Google Scholar 

  24. S. Gao, S.Y. Xiang, Z.W. Song, Y.N. Han, Y.N. Zhang, Y. Hao, Motion detection and direction recognition in a photonic spiking neural network consisting of VCSELs-SA. Opt. Express 30(18), 31701–31713 (2022)

    Article  ADS  Google Scholar 

  25. A. Skalli, X. Porte, N. Haghighi, S. Reitzenstein, J.A. Lott, D. Brunner, Computational metrics and parameters of an injection-locked large area semiconductor laser for neural network computing. Opt. Mater. Express 12(7), 2793–2804 (2022)

    Article  ADS  Google Scholar 

  26. N.N. Ledentsov, O.Y. Makarov, V. Shchukin, V. Kalosha, N. Ledentsov, L. Chrochos, M.B. Sanayeh, J. Turkiewicz, High speed VCSEL technology and applications. J. Lightwave Technol. 40(6), 1749–1763 (2022)

    Article  ADS  Google Scholar 

  27. L. Lan, J. Chen, Y. Wu, Y. Bai, X. Bi, Y. Li, Self-calibrated multiharmonic CO 2 sensor using VCSEL for urban in situ measurement. IEEE Trans. Instrum. Meas. 68(4), 1140–1147 (2018)

    Article  ADS  Google Scholar 

  28. M. Huang, D. Serkland, J. Camparo, A narrow-linewidth three-mirror VCSEL for atomic devices. Appl. Phys. Lett. 121(11), 114002 (2022)

    Article  ADS  Google Scholar 

  29. T. Katayama, D. Hayashi, H. Kawaguchi, All-optical shift register using polarization bistable VCSEL array. IEEE Photonics Technol. Lett. 28(19), 2062–2065 (2016)

    Article  ADS  Google Scholar 

  30. H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, H.-C. Kuo, Progress and prospects of GaN-based VCSEL from near UV to green emission. Prog. Quantum Electron. 57, 1–19 (2018)

    Article  ADS  Google Scholar 

  31. A. Liu, P. Wolf, J.A. Lott, D. Bimberg, Vertical-cavity surface-emitting lasers for data communication and sensing. Photonics Res. 7(2), 121–136 (2019)

    Article  Google Scholar 

  32. Y. Mei, G.-E. Weng, B.-P. Zhang, J.-P. Liu, W. Hofmann, L.-Y. Ying, J.-Y. Zhang, Z.-C. Li, H. Yang, H.-C. Kuo, Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap.’ Light Sci. Appl. 6(1), e16199 (2017)

    Article  Google Scholar 

  33. J. Duan, X.-G. Wang, Y.-G. Zhou, C. Wang, F. Grillot, Carrier-noise-enhanced relative intensity noise of quantum dot lasers. IEEE J. Quantum Electron. 54(6), 1–7 (2018)

    Article  Google Scholar 

  34. M. Sheikhey, S. MirSoheil, N. Asadian, H. Baghban, Quantum-dot semiconductor lasers with prominent relative intensity noise and spectral characteristics. Opt. Express 29(7), 10236–10248 (2021)

    Article  ADS  Google Scholar 

  35. J. Lavrencik, S.K. Pavan, V.A. Thomas, S.E. Ralph, Noise in VCSEL-based links: direct measurement of VCSEL transverse mode correlations and implications for MPN and RIN. J. Lightwave Technol. 35(4), 698–705 (2016)

    Article  ADS  Google Scholar 

  36. D.J. Herrera, V. Kovanis, L.F. Lester, Using transitional points in the optical injection locking behavior of a semiconductor laser to extract its dimensionless operating parameters. IEEE J. Sel. Top. Quantum Electron. 28(1), 1–9 (2021)

    Google Scholar 

  37. Z. Feng, F. Yang, X. Zhang, D. Chen, F. Wei, N. Cheng, Y. Sun, Y. Gui, H. Cai, Ultra-low noise optical injection locking amplifier with AOM-based coherent detection scheme. Sci. Rep. 8(1), 1–7 (2018)

    Article  Google Scholar 

  38. E.K. Lau, L.J. Wong, M.C. Wu, Enhanced modulation characteristics of optical injection-locked lasers: a tutorial. IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009)

    Article  ADS  Google Scholar 

  39. H. Abbaspour, V. Ahmadi, M.H. Yavari, Analysis of QD VCSEL dynamic characteristics considering homogeneous and inhomogeneous broadening. IEEE J. Sel. Top. Quantum Electron. 17(5), 1327–1333 (2011)

    Article  ADS  Google Scholar 

  40. A. Mahjoory, M. Maleki, H. Baghban, M. Sheikhey, Polarization independent high contrast grating 1300 nm dot-in-a-well InAs quantum-dot VCSEL. Phys. Scr. 98, 065512 (2023)

    Article  ADS  Google Scholar 

  41. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, A. Sakamoto, Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In x Ga 1–x A s/G a A s quantum dot lasers. Phys. Rev. B 61(11), 7595 (2000)

    Article  ADS  Google Scholar 

  42. W. Nakwaski, A.M. Kontkiewicz, Thermal resistance of light-emitting diodes. IEEE Trans. Electron Devices 32(11), 2282–2291 (1985)

    Article  ADS  Google Scholar 

  43. Y. Qi, W. Li, S. Liu, X. Ma, Comprehensive design and simulation of a composite reflector for mode control and thermal management of a high-power VCSEL. JOSA B 37(11), 3487–3495 (2020)

    Article  ADS  Google Scholar 

  44. J. Bai, L. Wang, T. Zhang, T. Hou, M. Zhang, B. Xu, D. Li, X. Jin, Q. Li, Y. Wang, Enabling ultranarrow blue emission linewidths in colloidal alloy quantum dots by decreasing the exciton fine structure splitting and exciton-phonon coupling. Nano Res. 16, 1576–1585 (2022)

    Article  ADS  Google Scholar 

  45. J.C. Van Der Bok, D.M. Dekker, M.L. Peerlings, B.B. Salzmann, A. Meijerink, Luminescence line broadening of CdSe nanoplatelets and quantum dots for application in w-LEDs. J. Phys. Chem. C 124(22), 12153–12160 (2020)

    Article  Google Scholar 

  46. Y. Shu, X. Lin, H. Qin, Z. Hu, Y. Jin, X. Peng, Quantum dots for display applications. Angew. Chem. 132(50), 22496–22507 (2020)

    Article  ADS  Google Scholar 

  47. F. Basso Basset, S. Bietti, A. Tuktamyshev, S. Vichi, E. Bonera, S. Sanguinetti, Spectral broadening in self-assembled GaAs quantum dots with narrow size distribution. J. Appl. Phys. 126(2), 024301 (2019)

    Article  ADS  Google Scholar 

  48. R.H. Gilmore, E.M. Lee, M.C. Weidman, A.P. Willard, W.A. Tisdale, Charge carrier hopping dynamics in homogeneously broadened PbS quantum dot solids. Nano Lett. 17(2), 893–901 (2017)

    Article  ADS  Google Scholar 

  49. M.M. Sheikhey, A. Mahjoory, H. Baghban, S. Golmohammadi, Mid-IR quantum dot cascade VCSEL: feasibility study and feature extraction. Appl. Opt. 61(6), 1523–1530 (2022)

    Article  ADS  Google Scholar 

  50. H. Mirdadashi, M.M. Sheikhey, H. Baghban, Dynamics and spectral characteristics of quantum dot semiconductor lasers under optical injection-locking. Phys. Scr. 95(2), 025802 (2020)

    Article  ADS  Google Scholar 

  51. C. Wang, K. Schires, M. Osiński, P.J. Poole, F. Grillot, Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking. Sci. Rep. 6(1), 27825 (2016)

    Article  ADS  Google Scholar 

  52. A. Mahjoory, H. Baghban, M.M. Sheikhey, Utilizing ınjection-locked quantum-dot VCSELs for optical wireless communications, in 2022 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC) (2022)

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.M. conducted the modeling and simulation and wrote the manuscript. H.B. fully supervised the research. A.M. and H.B. assisted in the preparation of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hamed Baghban.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahjoory, A., Baghban, H. DWELL InAs quantum-dot VCSEL noise behavior promotion subjected to optical injection locking. Appl. Phys. B 130, 17 (2024). https://doi.org/10.1007/s00340-023-08146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08146-0

Navigation