Skip to main content
Log in

A Relationship Between Manufacturing Routes-Microstructure-Biotribology of Selective Laser Melted Stainless Steel 316L Under Dry and Simulated Body Fluid

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This study aims to compare the microstructural and biotribological behavior of additively manufactured and commercially available stainless steel 316L (SS 316L) implants under simulated body fluid. The surface integrity, microstructures, and micro-hardness characterizations were performed. FESEM micrographs and 3D surface profiles dictate that the specimen is manufactured using a bi-directional 67º rot-scanning strategy. Further, the microstructure, XRD, and micro-hardness outcomes dictate that the selective laser melted (SLMed) sample has an anisotropic fine-grained (18.49 µm) gamma austenite phase with an improved hardness of 280.35HV0.05, which is 146% higher compared to casted counterpart. In-vitro state biotribological results indicate that the SLMed part has a minimum coefficient of friction (COF: 0.287) value under simulated body fluid, which is 58% less than the casted part (COF: 0.494), and an improved volumetric wear loss at different loading conditions was also observed. The obtained outcomes dictate that selective laser melting is a better processing route to manufacture SS 316L permanent implants with enhanced microstructural, mechanical, and biotribological behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data will be made available on reasonable request.

References

  1. Lee, H., Lim, C. H. J., Low, M. J., Tham, N., Murukeshan, V. M., & Kim, Y. J. (2017). Lasers in additive manufacturing: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 307–322.

    Article  Google Scholar 

  2. Chua, Z. Y., Ahn, I. H., & Moon, S. K. (2017). Process monitoring and inspection systems in metal additive manufacturing: Status and applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 235–245.

    Article  Google Scholar 

  3. Ahn, D. G. (2021). Directed energy deposition (DED) process: State of the art. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 703–742.

    Article  Google Scholar 

  4. Phadke, N., Raj, R., Srivastava, A. K., Dwivedi, S., & Dixit, A. R. (2022). Modeling and parametric optimization of laser powder bed fusion 3D printing technique using artificial neural network for enhancing dimensional accuracy. Materials Today: Proceedings, 56, 873–878.

    Google Scholar 

  5. Anand, M., & Das, A. K. (2021). Issues in fabrication of 3D components through DMLS Technique: A review. Optics & Laser Technology, 139, 106914.

    Article  Google Scholar 

  6. Raj, R., Dixit, A. R., Singh, S. S., & Paul, S. (2022). Print parameter optimization and mechanical deformation analysis of alumina-nanoparticle doped photocurable nanocomposites fabricated using vat-photopolymerization based additive technology. Additive Manufacturing, 60, 103201.

    Article  Google Scholar 

  7. Pagac, M., Hajnys, J., Ma, Q. P., Jancar, L., Jansa, J., Stefek, P., & Mesicek, J. (2021). A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3d printing. Polymers, 13(4), 598.

    Article  Google Scholar 

  8. Davis, R., Singh, A., Pereira, R. B. D., Sabino, R. M., Popat, K., Soares, P., & Brandão, L. C. (2023). Collaborative Impact of Cryo-Treated Cutting Tool and Hybrid Milling Environment Towards Improved Sustainable Milling of ASTM F2063 Ni55. 6Ti44. 4 Alloy. International Journal of Precision Engineering and Manufacturing-Green Technology, 1–25.

  9. Wang, Q., Gao, M., Li, Q., Liu, C., Li, L., Li, X., & Liu, Z. (2023). A review on energy consumption and efficiency of selective laser melting considering support: advances and prospects. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-023-00542-3

    Article  Google Scholar 

  10. Bose, S., Ke, D., Sahasrabudhe, H., & Bandyopadhyay, A. (2018). Additive manufacturing of biomaterials. Progress in materials science, 93, 45–111.

    Article  Google Scholar 

  11. Dwivedi, S., Dixit, A. R., Das, A. K., & Nag, A. (2023). A novel additive texturing of stainless steel 316L through binder jetting additive manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-023-00508-5

    Article  Google Scholar 

  12. Dwivedi, S., Dixit, A. R., & Das, A. K. (2022). Wetting behavior of selective laser melted (SLM) bio-medical grade stainless steel 316L. Materials Today: Proceedings, 56, 46–50.

    Google Scholar 

  13. Chang, C. S., Wu, K. T., Han, C. F., Tsai, T. W., Liu, S. H., & Lin, J. F. (2022). Establishment of the model widely valid for the melting and vaporization zones in selective laser melting printings via experimental verifications. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00283-7

    Article  Google Scholar 

  14. Sun, L., Ren, X., He, J., & Zhang, Z. (2021). Melting cell based compensated design method for improving dimensional accuracy of additively manufactured thin channels. International Journal of Precision Engineering and Manufacturing-Green Technology, 1–12

  15. Mezzetta, J., Choi, J. P., Milligan, J., Danovitch, J., Chekir, N., Bois-Brochu, A., & Brochu, M. (2018). Microstructure-properties relationships of Ti-6Al-4V parts fabricated by selective laser melting. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 605–612.

    Article  Google Scholar 

  16. Peng, T., & Chen, C. (2018). Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 55–62.

    Article  Google Scholar 

  17. Cherry, J. A., Davies, H. M., Mehmood, S., Lavery, N. P., Brown, S. G. R., & Sienz, J. (2015). Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. The International Journal of Advanced Manufacturing Technology, 76, 869–879.

    Article  Google Scholar 

  18. Salman, O. O., Gammer, C., Chaubey, A. K., Eckert, J., & Scudino, S. (2019). Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Materials Science and Engineering: A, 748, 205–212.

    Article  Google Scholar 

  19. Suryawanshi, J., Prashanth, K. G., & Ramamurty, U. (2017). Mechanical behavior of selective laser melted 316L stainless steel. Materials Science and Engineering: A, 696, 113–121.

    Article  Google Scholar 

  20. Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J. P. R., & Schoenung, J. M. (2017). On the limitations of volumetric energy density as a design parameter for selective laser melting. Materials & Design, 113, 331–340.

    Article  Google Scholar 

  21. Oliveira, J. P., LaLonde, A. D., & Ma, J. (2020). Processing parameters in laser powder bed fusion metal additive manufacturing. Materials & Design, 193, 108762.

    Article  Google Scholar 

  22. Hajnys, J., Pagáč, M., Měsíček, J., Petru, J., & Król, M. (2020). Influence of scanning strategy parameters on residual stress in the SLM process according to the bridge curvature method for AISI 316L stainless steel. Materials, 13(7), 1659.

    Article  Google Scholar 

  23. Tarasova, T. V., Nazarov, A. P., & Shalapko, Y. I. (2014). Abrasive and fretting wear resistance of refractory cobalt alloy specimens manufactured by the method of selective laser melting. Journal of Friction and Wear, 35, 365–373.

    Article  Google Scholar 

  24. Bartolomeu, F., Buciumeanu, M., Pinto, E., Alves, N., Carvalho, O., Silva, F. S., & Miranda, G. (2017). 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting. Additive Manufacturing, 16, 81–89.

    Article  Google Scholar 

  25. Bartolomeu, F., Sampaio, M., Carvalho, O., Pinto, E., Alves, N., Gomes, J. R., & Miranda, G. (2017). Tribological behavior of Ti6Al4V cellular structures produced by Selective Laser Melting. Journal of the mechanical behavior of biomedical materials, 69, 128–134.

    Article  Google Scholar 

  26. Yan, X., Gao, S., Chang, C., Liao, H., & Liu, M. (2020). Microstructure and tribological property of selective laser melted Fe-Mn-Al-C alloy. Materials Letters, 270, 127699.

    Article  Google Scholar 

  27. Kumar, V., Joshi, M. D., Pruncu, C., Singh, I., & Hosmani, S. S. (2021). Microstructure and tribological response of selective laser melted AISI 316L stainless steel: The role of severe surface deformation. Journal of Materials Engineering and Performance, 30, 5170–5183.

    Article  Google Scholar 

  28. AlMangour, B., Grzesiak, D., Cheng, J., & Ertas, Y. (2018). Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods. Journal of Materials Processing Technology, 257, 288–301.

    Article  Google Scholar 

  29. Amanov, A. (2021). Advancement of tribological properties of Ti–6Al–4V alloy fabricated by selective laser melting. Tribology International, 155, 106806.

    Article  Google Scholar 

  30. Gençoğlu, U., Kaya, G., Ergüder, T. O., Hacısalihoğlu, İ, & Yıldız, F. (2022). Investigation of the structural and tribological properties of 316L stainless steel manufactured using variable production parameters by selective laser melting. Journal of Materials Engineering and Performance, 31(5), 3688–3703.

    Article  Google Scholar 

  31. Amanov, A. (2020). Effect of local treatment temperature of ultrasonic nanocrystalline surface modification on tribological behavior and corrosion resistance of stainless steel 316L produced by selective laser melting. Surface and Coatings Technology, 398, 126080.

    Article  Google Scholar 

  32. Turalıoğlu, K., Taftalı, M., & Yetim, F. (2021). Determining the tribological behavior of 316L stainless steel with lubricating micro-channels produced by the selective laser melting (SLM) method. Industrial Lubrication and Tribology, 73(5), 700–707.

    Article  Google Scholar 

  33. Dwivedi, S., Dixit, A. R., Das, A. K., & Adamczuk, K. (2022). Additive texturing of metallic implant surfaces for improved wetting and biotribological performance. Journal of Materials Research and Technology, 20, 2650–2667.

    Article  Google Scholar 

  34. Afoke, N. Y., Byers, P. D., & Hutton, W. (1987). Contact pressures in the human hip joint. The Journal of bone and joint surgery British, 69(4), 536–541.

    Article  Google Scholar 

  35. Pratap, T., & Patra, K. (2018). Mechanical micro-texturing of Ti-6Al-4V surfaces for improved wettability and bio-tribological performances. Surface and Coatings Technology, 349, 71–81.

    Article  Google Scholar 

  36. Salman, O. O., Brenne, F., Niendorf, T., Eckert, J., Prashanth, K. G., He, T., & Scudino, S. (2019). Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. Journal of Manufacturing Processes, 45, 255–261.

    Article  Google Scholar 

  37. Tucho, W. M., Lysne, V. H., Austbø, H., Sjolyst-Kverneland, A., & Hansen, V. (2018). Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. Journal of Alloys and Compounds, 740, 910–925.

    Article  Google Scholar 

  38. Ni, X., Kong, D., Wu, W., Zhang, L., Dong, C., He, B., & Zhu, D. (2018). Corrosion behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds. Journal of materials engineering and performance, 27, 3667–3677.

    Article  Google Scholar 

  39. Zhong, Y., Liu, L., Wikman, S., Cui, D., & Shen, Z. (2016). Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. Journal of Nuclear Materials, 470, 170–178.

    Article  Google Scholar 

  40. Man, C., Dong, C., Liu, T., Kong, D., Wang, D., & Li, X. (2019). The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Applied Surface Science, 467, 193–205.

    Article  Google Scholar 

  41. Lodhi, M. K., Deen, K. M., Greenlee-Wacker, M. C., & Haider, W. (2019). Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications. Additive Manufacturing, 27, 8–19.

    Article  Google Scholar 

  42. Gülcan, O., Günaydın, K., Çelik, A., & Yasa, E. (2022). The effect of contactless support parameters on the mechanical properties of laser powder bed fusion produced overhang parts. The International Journal of Advanced Manufacturing Technology, 122(7–8), 3235–3253.

    Article  Google Scholar 

  43. Arkusz, K., Pasik, K., Halinski, A., & Halinski, A. (2021). Surface analysis of ureteral stent before and after implantation in the bodies of child patients. Urolithiasis, 49(1), 83–92.

    Article  Google Scholar 

  44. Mazurek-Popczyk, J., Palka, L., Arkusz, K., Dalewski, B., & Baldy-Chudzik, K. (2022). Personalized, 3D-printed fracture fixation plates versus commonly used orthopedic implant materials-biomaterials characteristics and bacterial biofilm formation. Injury, 53(3), 938–946.

    Article  Google Scholar 

  45. Farshidianfar, M. H., Khajepour, A., & Gerlich, A. P. (2016). Effect of real-time cooling rate on microstructure in laser additive manufacturing. Journal of Materials Processing Technology, 231, 468–478.

    Article  Google Scholar 

  46. Bertoli, U. S., Guss, G., Wu, S., Matthews, M. J., & Schoenung, J. M. (2017). In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Materials & Design, 135, 385–396.

    Article  Google Scholar 

  47. Gülcan, O., Günaydın, K., Çelik, A., & Yasa, E. (2023). Mechanical properties of laser powder bed fusion produced overhang parts with different support geometries: an experimental study. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-023-00443-6

    Article  Google Scholar 

  48. Kumar, V., Mandal, A., Das, A. K., & Kumar, S. (2021). Parametric study and characterization of wire arc additive manufactured steel structures. The International Journal of Advanced Manufacturing Technology, 115(5–6), 1723–1733.

    Article  Google Scholar 

  49. Prajapati, R., Dwivedi, S., Kumar, D., Srivastava, A. K., & Dixit, A. R. (2023). Investigation on bonding strength and tribological performances of ceramic laminated aa6063 composite developed by friction stir additive manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-023-00545-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Central Research Facility of IIT (ISM), Dhanbad, India, for providing the 3D printing research facility. The authors also thank the Department of Science and Technology (DST), India, for the 3D profilometer facility under the FIST project grant SR/FST/ET-II/2018/222(C).

Author information

Authors and Affiliations

Authors

Contributions

SD: Conceptualization, Experiments, Data curation, Validation, Investigation, Writing-Original Draft, Writing- Review & Editing. Amit Rai Dixit: Conceptualization, Validation, Supervision, Writing-Review & Editing. AKD: Validation, Supervision, Writing-Review & Editing.

Corresponding author

Correspondence to Amit Rai Dixit.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, S., Dixit, A.R. & Das, A.K. A Relationship Between Manufacturing Routes-Microstructure-Biotribology of Selective Laser Melted Stainless Steel 316L Under Dry and Simulated Body Fluid. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2023). https://doi.org/10.1007/s40684-023-00578-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-023-00578-5

Keywords

Navigation