Skip to main content
Log in

Predicting the Density of Solid and Liquid Near-Eutectic Ga–In–Sn Alloy

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Europe has set itself the goal of reducing net greenhouse gas emissions to zero by 2050. This requires innovative concepts for the transfer of thermal energy. One of these could be the use of liquid metals and alloys as heat carriers. For this purpose, the precise knowledge of the thermophysical properties of these materials is of great importance. This study therefore aims to model the temperature dependent density of solid and liquid near-eutectic gallium-indium-tin alloys. Three approaches—weighted fitting of experimental data, modelling based on atomic volumes of alloying elements, and an approach that accounts for possible excess density—are utilised. Details of these strategies with respect to the thermophysical properties of the alloying elements, and the binary sub-alloys, are discussed. The resulting correlations are validated using six independent experimental data sets. The study concludes that, currently, the fitting polynomials are the most reliable models. The estimates based on atomic volumes are in close agreement with these functions. This is true for both the solid and liquid states. This marks the first time that the density of the solid state of this particular alloy has been modelled. The difficulties associated with modelling the density excess are manifold. This includes the lack of precise thermophysical properties for the alloying elements. The study paves the way for near-eutectic liquid gallium-indium-tin alloy as a heat carrier. In the view of the potential importance of heat transfer employing liquid metals, these findings highlight the need for further investigations in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

c p :

Isobaric heat capacity [J·kg1·K1]

G :

Gibbs energy: [J]

H :

Enthalpy of mixing [J·mol1]

L xy :

Interaction parameters [J·mol1]

T :

Temperature [K]

V i :

Atomic volume of component i [m3·mol1]

X i :

Molar fraction of component i [–]

β :

Expansion coefficient [K1]

ρ :

Density [kg·m3

EGaInSn:

Near-eutectic gallium-indium-tin alloy

eu:

Eutectic

fit:

Fitting approach

Ga:

Gallium

GaIn:

Binary gallium indium alloy

GaSn:

Binary gallium tin alloy

In:

Indium

InSn:

Binary indium tin alloy

liq:

Liquid

m:

Melting

Sn:

Tin

sol:

Solid

exc:

Excess

i…0, 1:

Constant and linear interaction parameters

References

  1. The European Green Deal (europa.eu)

  2. A. Heinzel, W. Hering, J. Konys, L. Marocco, K. Litfin, G. Müller, J. Pacio, C. Schroer, R. Stieglitz, L. Stoppel, A. Weisenburger, T. Wetzel, Energy Technol. (2017). https://doi.org/10.1002/ente.v5.710.1038/s41467-019-11823-4

    Article  Google Scholar 

  3. M.K. Akbari, S. Zhuiykov, Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-11823-4

    Article  Google Scholar 

  4. G. Bo, L. Ren, X. Xu, Y. Du, S. Dou, Adv. Phys. (2018). https://doi.org/10.1080/23746149.2018.1446359

    Article  Google Scholar 

  5. M.M. Sarafraz, M.R. Safaei, M. Goodarzi, B. Yang, M. Arjomandi, J. Heat Mass Transfer (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.057

    Article  Google Scholar 

  6. T. Hao, H. Ma, X. Ma, J. Heat Transfer ASME (2019). https://doi.org/10.1115/1.4043620

    Article  Google Scholar 

  7. R.R. Riehl, M.H. Buschmann, Appl. Therm. Eng. (2024). https://doi.org/10.1016/j.applthermaleng.2023.121413

    Article  Google Scholar 

  8. M.J.V. Lourenço, F.J.V. Santos, V.M.B. Nunes, M. Alves, C.A. Nieto de Castro, R. Mondragón, L. Hernández, R. Künanz, C. Hanzelmann, S. Feja, M.H. Buschmann, Thermophysical Properties of Eutectic Gallium-Indium-Tin Alloy Revised, 20th Meeting of the International Association for Transport Properties, Lisbon (Portugal) July 9th 2022

  9. M.J.V. Lourenço, M. Alves, J.M. Serra, C.A. Nieto de Castro, M.H. Buschmann, The Thermal Conductivity of Near-Eutectic Galinstan (Ga68.4In21.5Sn10) Molten Alloy, J Thermophysics, (2023) submitted

  10. P.É.L. de Boisbaudran, Alliages d´indium et de gallium, (1878) 701–703.

  11. H. Spengler, Z. Metall. 46, 464–469 (1955)

    Google Scholar 

  12. D.S. Evans, A. Prince, Met. Sci. 12, 411–414 (1978)

    Article  Google Scholar 

  13. A. Koh, S. Chun, W. Hwang, P.Y. Zavalij, G. Slipher, R. Mrozek, Materialia (2019). https://doi.org/10.1016/j.mtla.2019.100512

    Article  Google Scholar 

  14. Q. Yu, Q. Zhang, J. Zong, S. Liu, X. Wang, X. Wang, H. Zheng, Q. Cao, D. Zhang, J.Z. Jiang, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.06.203

    Article  Google Scholar 

  15. V.Y. Prokhorenko, E.A. Ratushnyak, B.I. Stadnyk, V.I. Lakh, A.M. Koval, High Temp. 8, 374–378 (1970)

    Google Scholar 

  16. L.L. Migai, N.Y. Mikhailov, N.L. Perlova, M.A. Pokrasin, V.V. Roshchupkin, A.I. Chernov, Russ J Phys Chem (1981) 2701–2703

  17. Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, R. Novakovic, J Chem Eng Data (2014, 2015) https://doi.org/10.1021/je400882q

  18. X. Wang, Q. Yu, X. Wang, Z. Dai, Q. Cao, Y. Ren, D. Zhang, J.Z. Jiang, J. Phys. Chem (2021). https://doi.org/10.1021/acs.jpcc.1c00370

    Article  Google Scholar 

  19. T. Laube, F. Emmendörfer, B. Dietrich, L. Marocco, Luca, T. Wetzel, KIT (2021) https://publikationen.bibliothek.kit.edu/1000140052

  20. Geratherm priv. Communication (2010)

  21. CRC Handbook of Chemistry and Physics, 86th edn. (CRC Press, Boca Raton, 2006)

  22. A. Burdakin, B. Khlevnoy, M. Samoylov, V. Sapritsky, S. Ogarev, A. Panfilov, G. Bingham, V. Privalsky, J. Tansock, T. Humpherys, Metrologia 45, 75–82 (2008). https://doi.org/10.1088/0026-1394/45/1/011

    Article  ADS  Google Scholar 

  23. R.L. Orr, H.J. Giraud, R. Hultgren, Third Technical Report Contract No. Nonr-222(63) (1961) University of California, Berkeley California011

  24. V.M.B. Nunes, M.J.V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, J Thermophys (2010). https://doi.org/10.1007/s10765-010-0848-z

    Article  Google Scholar 

  25. V.M.B. Nunes, C.S.G.P. Queirós, M.J.V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, J. Thermophys. (2018). https://doi.org/10.1007/s10765-018-2388-x

    Article  Google Scholar 

  26. D.D. Williams, R.R. Miller, New Compounds (1950) 3821

  27. L. Wang, A. Xian, H. Shao, Density measurement of liquid indium and zinc by the c-ray attenuation method. High Temp. (2003/2007) 35/36 659–665

  28. S.V. Stankus, R.A. Khairulin, High Temp. (2006). https://doi.org/10.1007/s10740-006-0048-5

    Article  Google Scholar 

  29. M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J. Wu, W.A. Wakeham, J. Phys. Chem. Ref. Data (2012). https://doi.org/10.1063/1.4729873

    Article  Google Scholar 

  30. V.Y. Kezik, A.S. Kalinichenko, V.A. Kalinitchenko, Z. Metall. (2003). https://doi.org/10.3139/ijmr-2003-0019

    Article  Google Scholar 

  31. S. Ayrinhac, M. Gauthier, G. Le Marchand, M. Morand, F. Bergame, F. Decremps, J. Phys. Condens Matter 1–8, 27 (2015)

    Google Scholar 

  32. D.K. Belashchenko, Russ. J. Phys. Chem. A (2021). https://doi.org/10.1134/S0036024421110054

    Article  Google Scholar 

  33. M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R.M. Banish, I. Egry, J. Wu, E. Kaschnitz, W.A. Wakeham, J. Phys. Chem. Ref. Data (2010). https://doi.org/10.1063/1.3467496

    Article  Google Scholar 

  34. Y. Liu, Y.H. Liu, X.P. Su, CALPHAD (2020). https://doi.org/10.1016/j.calphad.2019.101690

    Article  Google Scholar 

  35. B. Predel, A. Emam, Mater. Sci. Eng. (1969). https://doi.org/10.1016/0025-5416(69)90005-6

    Article  Google Scholar 

  36. Z. Yu, H. Leng, Q. Luo, J. Zhang, X. Wu, K.C. Chou, Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2020.108778

    Article  Google Scholar 

  37. Peter Linstrom (2017), NIST Chemistry WebBook - SRD 69, National Institute of Standards and Technology https://doi.org/10.18434/T4D303. Accessed 24 Oct 2023

  38. Indium | Metals & Alloys | Products made by Indium Corporation. Accessed 24 Oct 2023

  39. S. Sharafat, N. Ghoniem, Summary of Thermo-Physical Properties of Sn, And Compounds of Sn-H, Sn-O, Sn-C, Sn-Li, and Sn-Si And Comparison of Properties of Sn, Sn-Li, Li, and Pb-Li, UCLA-UCMEP-00-31 Report (2000)

  40. Q. Yu, X.D. Wang, Y. Su, Q.P. Cao, Y. Ren, D.X. Zhang, J.Z. Jiang, Phys. Rev. B (2017). https://doi.org/10.1103/PhysRevB.95.224203

    Article  Google Scholar 

  41. Q. Xu, N. Oudalov, Q. Guo, H.M. Jaeger, E. Brown, Phys. Fluids (2012). https://doi.org/10.1063/1.4724313

    Article  Google Scholar 

  42. V.Y. Prokhorenko, V.V. Roshchupkin, M.A. Pokrasin, S.V. Prokhorenko, V.V. Kotov, High Temp. (2000). https://doi.org/10.1023/A:1004157827093

    Article  Google Scholar 

  43. R. Predel, A. Emam, J. Less Common Met. (1969). https://doi.org/10.1016/0022-5088(69)90008-3

    Article  Google Scholar 

  44. T. Gancarz, J. Mol. Liq. (2017). https://doi.org/10.1016/j.molliq.2017.06.002

    Article  Google Scholar 

  45. U.R. Kattner, JOM (1997). https://doi.org/10.1007/s11837-997-0024-5

    Article  Google Scholar 

  46. S.V. Stankus, I.V. Savchenko, A.S. Agazhanov, J. Thermophys. (2012). https://doi.org/10.1007/s10765-012-1192-2

    Article  Google Scholar 

  47. J. Pstruś, Appl. Surf. Sci. (2013). https://doi.org/10.1016/j.apsusc.2012.10.098

    Article  Google Scholar 

  48. Z. Moser, W. Gasior, J. Pstruś, I. Kaban, W. Hoyer, J. Thermophys. (2009). https://doi.org/10.1007/s10765-009-0663-6

    Article  Google Scholar 

  49. P.E. Berthou, R. Tougas, Metall. Trans. (1970). https://doi.org/10.1007/BF03037849

    Article  Google Scholar 

  50. D. Jendrzejczyk-Handzlik, P. Handzlik, J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.111543

    Article  Google Scholar 

  51. T.J. Anderson, I. Ansara, J. Phase Equilib. (1991). https://doi.org/10.1007/BF02663677

    Article  Google Scholar 

  52. R. Pong, Thermodynamic studies of Ga-In, Ga-Sb and Ga-In-Sb Liquid alloys by solid state electrochemistry with oxide electrolytes PhD-Thesis Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) (1975) https://doi.org/10.2172/4177715

  53. J. Fels, P. Berger, T.L. Reichmann, H.J. Seifert, H. Flandorfer, J. Mol. Liquids (2019). https://doi.org/10.1016/j.molliq.2019.111578

    Article  Google Scholar 

  54. T.J. Anderson, I. Ansara, J Phase Equilib. (1992). https://doi.org/10.1007/BF02667485

    Article  Google Scholar 

  55. M. Fornaris, Y.M. Muggianu, M. Gambino, J.P. Bros, Z. Naturforsch. (1980). https://doi.org/10.1515/zna-1980-1121

    Article  Google Scholar 

  56. D. Jendrzejczyk-Handzlik, W. Gierlotka, K. Fitzner, J Chem Thermodynamics (2009). https://doi.org/10.1016/j.jct.2008.09.007

    Article  Google Scholar 

  57. T. Miki, N. Ogawa, T. Nagasaka, M. Hino, Mater. Trans. (2001). https://doi.org/10.2320/matertrans.42.732

    Article  Google Scholar 

  58. S. Lan, M. Blodgett, K.F. Kelton, J.L. Ma, J. Fan, X.L. Wang, Appl. Phys. Lett. (2016). https://doi.org/10.1063/1.4952724

    Article  Google Scholar 

  59. G.F. Strouse, Materials Sci (2001) https://api.semanticscholar.org/CorpusID:139617499

Download references

Acknowledgements

The Bundesministerium für Wirtschaft und Klimaschutz der Bundesrepublik Deutschland supports the study financially under the research grant 49MF200081. The author thanks Maria José V. Lourenço and Carlos Nieto de Castro (University of Lisbon, Portugal) for the fruitful discussions that supported this work.

Funding

The author has no competing interests to report. The Bundesministerium für Wirtschaft und Klimaschutz der Bundesrepublik Deutschland supports the study financially under the research Grant 49MF200081.

Author information

Authors and Affiliations

Authors

Contributions

M.H.B conceived and authored the paper.

Corresponding author

Correspondence to Matthias H. Buschmann.

Ethics declarations

Conflict of interest

The un-expanded correlations for Eqs. 8 and 24 are available upon request from the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buschmann, M.H. Predicting the Density of Solid and Liquid Near-Eutectic Ga–In–Sn Alloy. Int J Thermophys 45, 10 (2024). https://doi.org/10.1007/s10765-023-03295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03295-y

Keywords

Navigation