Skip to main content
Log in

Exacerbation of drought-induced physiological and biochemical changes in leaves of Pisum sativum upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Drought stress affects photosynthesis, leading to significant decrease in crop productivity. In the current study, the importance of the cytochrome oxidase (COX) and alternative oxidase (AOX) pathways of the mitochondrial oxidative electron transport chain (mETC) for photosynthesis and reactive oxygen species (ROS) homeostasis was evaluated in the leaves of Pisum sativum plants exposed to drought stress for 3 days (D3), 6 days (D6), and 9 days (D9). While drought stress resulted in decreased CO2 assimilation rates, leaf stomatal conductance, transpiration, and leaf intercellular CO2 concentration in a stress-dependent manner, superimposition with mETC inhibitors, antimycin A (AA) and salicylhydroxamic acid (SHAM), aggravated the responses. Decreased chlorophyll content, photosynthesis, and RubisCO (RbcL) degradation during progressive drought and their aggravation upon AOX pathway restriction indicated the importance of the AOX pathway for photosynthetic activity. Compared with COX pathway inhibition, higher intracellular H2O2 and O ⋅−2 levels, and increased cell death upon restriction of the AOX pathway during D6 and D9 stress conditions correlating with the modulation in antioxidant enzyme activities, signify the essentiality of the AOX pathway for ROS maintenance at optimal levels. Further, increased AOX1a expression during D6 and D9 conditions along with increased AOX protein levels indicated the activation of the AOX pathway during drought stress. Decline in Fv/Fm, actual quantum yield of PSII (ФPSII), photochemical quenching (qP), non-photochemical quenching (NPQ), and electron transport rate (ETR) upon restriction of the COX and AOX pathways indicated the requirement of mETC activity for optimal photochemical activities not only under normal conditions but also under progressive drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Alber NA and Vanlerberghe GC 2019 Signaling interactions between mitochondria and chloroplasts in Nicotiana tabacum leaf. Physiol Plant. 167 188–204

    Article  PubMed  CAS  Google Scholar 

  • Analin B, Mohanan A, Bakka K, et al. 2020 Cytochrome oxidase and alternative oxidase pathways of mitochondrial electron transport chain are important for the photosynthetic performance of pea plants under salinity stress conditions. Plant Physiol. Biochem. 154 248–259

    Article  PubMed  CAS  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, et al. 2017 Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 8 69

    Article  PubMed  PubMed Central  Google Scholar 

  • Apel K and Hirt H 2004 Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55 373–399

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI 1949 Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24 1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atkin OK and Macherel D 2009 The crucial role of plant mitochondria in orchestrating drought tolerance. Ann. Bot. 103 581–597

    Article  PubMed  CAS  Google Scholar 

  • Avramova V, Abdelgawad H, Zhang Z, et al. 2015 Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol. 169 1382–1396

    Article  PubMed  PubMed Central  Google Scholar 

  • Bag P, Shutova T, Shevela D, et al. 2023 Flavodiiron-mediated O2 photoreduction at photosystem I acceptor-side provides photoprotection to conifer thylakoids in early spring. Nat. Commun. 14 3210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailleul B, Berne N, Murik O, et al. 2015 Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524 366–369

    Article  PubMed  CAS  Google Scholar 

  • Bartoli CG, Pastori GM and Foyer CH 2000 Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol. 123 335–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartoli CG, Gomez F, Gergoff G, et al. 2005 Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J. Exp. Bot. 56 1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Batra NG, Sharma V and Kumari N 2014 Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. J. Plant Interact. 9 712–721

    Article  CAS  Google Scholar 

  • Beauchamp C and Fridovich I 1971 Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 276–287

    Article  PubMed  CAS  Google Scholar 

  • Chadee A, Mohammad M and Vanlerberghe GC 2022 Evidence that mitochondrial alternative oxidase respiration supports carbon balance in source leaves of Nicotiana tabacum. J. Plant Physiol. 279 153840

    Article  PubMed  CAS  Google Scholar 

  • Cheng D, Gao H and Zhang L 2020 Upregulation of mitochondrial alternative oxidase pathway protects photosynthetic apparatus against photodamage under chilling stress in rumex K-1 leaves. Photosynthetica 58 1116–1121

  • Chakhchar A, Wahbi S, Lamaoui M, et al. 2015 Physiological and biochemical traits of drought tolerance in Argania spinosa. J. Plant Interact. 10 252–261

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP and Pereira JS 2003 Understanding plant responses to drought-from genes to the whole plant. Funct. Plant Biol. 30 239

    Article  PubMed  CAS  Google Scholar 

  • Dahal K, Martyn GD and Vanlerberghe GC 2015 Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a non-energy conserving respiratory electron sink. New Phytol. 208 382–395

    Article  PubMed  CAS  Google Scholar 

  • Dahal K, Martyn GD, Alber NA, et al. 2017 Coordinated regulation of photosynthetic and respiratory components is necessary to maintain chloroplast energy balance in varied growth conditions. J. Exp. Bot. 68 657–671

    PubMed  CAS  Google Scholar 

  • Dalal VK and Tripathy BC 2012 Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environ. 35 1685–1703

    Article  PubMed  CAS  Google Scholar 

  • Dalal VK and Tripathy BC 2018 Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Sci. Rep. 8 5955

    Article  PubMed  PubMed Central  Google Scholar 

  • Das K and Roychoudhury A 2014 Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2 53

    Article  Google Scholar 

  • Del-Saz NF, Florez-Sarasa I, Clemente-Moreno MJ, et al. 2016 Salinity tolerance is related to cyanide-resistant alternative respiration in Medicago truncatula under sudden severe stress. Plant Cell Environ. 39 2361–2369

    Article  PubMed  CAS  Google Scholar 

  • Demirevska K, Zasheva D, Dimitrov R, et al. 2009 Drought stress effects on RubisCO in wheat: changes in the RubisCO large subunit. Acta Physiol. Plant. 31 1129–1138

    Article  CAS  Google Scholar 

  • Desimone M, Henke A and Wagner E 1996 Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol. 111 789–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinakar C and Bartels D 2012 Light response, oxidative stress management and nucleic acid stability in closely related Linderniaceae species differing in desiccation tolerance. Planta 236 541–555

    Article  PubMed  CAS  Google Scholar 

  • Dinakar C, Abhaypratap V, Yearla SR, et al. 2010a Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Planta 231 461–474

    Article  PubMed  CAS  Google Scholar 

  • Dinakar C, Raghavendra AS and Padmasree K 2010b Importance of AOX pathway in optimizing photosynthesis under high light stress: role of pyruvate and malate in activating AOX. Physiol Plant 139 13–26

    Article  PubMed  CAS  Google Scholar 

  • Dinakar C, Vishwakarma A, Raghavendra AS, et al. 2016 Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems. Front. Plant Sci. 7 68

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, et al. 2003 Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15 1212–1226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng H, Li H, Li X, et al. 2007 The flexible interrelation between AOX respiratory pathway and photosynthesis in rice leaves. Plant Physiol. Biochem. 45 228–235

    Article  PubMed  CAS  Google Scholar 

  • Feng H-Q, Li H-Y and Sun K 2009 Enhanced expression of alternative oxidase genes is involved in the tolerance of rice (Oryza sativa L.) seedlings to drought stress. Z. Naturforsch. C 64 704–710

    Article  PubMed  CAS  Google Scholar 

  • Flexas J 2002 Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 89 183–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flexas J, Bota J, Cifre, et al. 2004 Understanding down-regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management. Ann. Appl. Biol. 144 273–283

    Article  Google Scholar 

  • Flexas J, Ribas-Carbo M, Bota J, et al. 2006 Decreased RubisCO activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol. 172 73–82

    Article  PubMed  CAS  Google Scholar 

  • Gardeström P and Igamberdiev AU 2016 The origin of cytosolic ATP in photosynthetic cells. Physiol. Plant. 157 367–379

    Article  PubMed  Google Scholar 

  • Garmash EV 2021 Role of mitochondrial alternative oxidase in the regulation of cellular homeostasis during development of photosynthetic function in greening leaves. Plant Biol. 23 221–228

  • Garmash EV 2023 Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: some possible mechanisms underlying the compensation effect. Plant Biol. 25 43–53

    Article  PubMed  CAS  Google Scholar 

  • Gill SS and Tuteja N 2010 Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 909–930

    Article  PubMed  CAS  Google Scholar 

  • Giraud E, Ho LH, Clifton R, et al. 2008 The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 147 595–610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grieco M, Roustan V, Dermendjiev G, et al. 2020 Adjustment of photosynthetic activity to drought and fluctuating light in wheat. Plant Cell Environ. 43 1484–1500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta A, Rico-Medina A and Caño-Delgado AI 2020 The physiology of plant responses to drought. Science 368 266–269

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, et al. 2020 Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9 681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishida H, Nishimori Y, Sugisawa M, et al. 1997 The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kda and 16-kda polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol. 38 471–479

    Article  PubMed  CAS  Google Scholar 

  • Joët T, Cournac L, Horvath EM, et al. 2001 Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH dehydrogenase complex to cyclic electron flow around photosystem I. Plant Physiol. 125 1919–1929

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuroki S, Tsenkova R, Moyankova D, et al. 2019 Water molecular structure underpins extreme desiccation tolerance of the resurrection plant Haberlea rhodopensis. Sci. Rep. 9 3049

    Article  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680–685

    Article  PubMed  CAS  Google Scholar 

  • Laxa M, Liebthal M, Telman W, et al. 2019 The role of the plant antioxidant system in drought tolerance. Antioxidants 8 94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee DH and Lee CB 2000 Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159 75–85

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Hu G, Wu G, et al. 2018 Differential responses of antioxidants and dehydrin expression in two switchgrass (Panicum virgatum) cultivars contrasting in drought tolerance. Trop. Plant Res. 7 255–267

    Article  Google Scholar 

  • Lowry O, Rosebrough N, Farr AL, et al. 1951 Protein measurement with the folin phenol reagent. J. Biol. Chem. 193 265–275

    Article  PubMed  CAS  Google Scholar 

  • Maurino VG and Peterhansel C 2010 Photorespiration: current status and approaches for metabolic engineering. Curr. Opin. Plant Biol. 13 248–255

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, et al. 2010 Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33 453–467

    Article  PubMed  CAS  Google Scholar 

  • Mittler R 2017 ROS are good. Trends Plant Sci. 22 11–19

    Article  PubMed  CAS  Google Scholar 

  • Muchate NS, Rajurkar NS, Suprasanna P, et al. 2019 NaCl induced salt adaptive changes and enhanced accumulation of 20-hydroxyecdysone in the in vitro shoot cultures of Spinacia oleracea L. Sci. Rep. 9 12522

    Article  PubMed  PubMed Central  Google Scholar 

  • Noctor G 2004 Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism. J. Exp. Bot. 55 49–57

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Mhamdi A and Foyer CH 2014 The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiol. 164 1636–1648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noguchi K and Yoshida K 2008 Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8 87–99

    Article  PubMed  CAS  Google Scholar 

  • Parry MAJ 2002 RubisCO activity: Effects of drought stress. Ann. Bot. 89 833–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pelloux J, Jolivet Y, Fontaine V, et al. 2001 Changes in RubisCO and RubisCO activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought. Plant Cell Environ. 24 123–131

    Article  CAS  Google Scholar 

  • Pinheiro C and Chaves MM 2010 Photosynthesis and drought: can we make metabolic connections from available data? J. Exp. Bot. 62 869–882

    Article  PubMed  Google Scholar 

  • Popov VN, Syromyatnikov MY, Fernie AR, et al. 2020 The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control. J. Exp. Bot. 72 793–807

    Article  Google Scholar 

  • Pyngrope S, Bhoomika K and Dubey RS 2012 Reactive oxygen species, ascorbate–glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma 250 585–600

    Article  PubMed  Google Scholar 

  • Quan R, Shang M, Zhang H, et al. 2004 Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol. J. 2 477–486

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra AS and Padmasree K 2003 Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci. 8 546–553

    Article  PubMed  CAS  Google Scholar 

  • Rangani J, Parida AK, Panda A, et al. 2016 Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme halophyte Salvadora persica L. Front. Plant Sci. 7 50

    Article  PubMed  PubMed Central  Google Scholar 

  • Roulin S and Feller U 1998 Light-independent degradation of stromal proteins in intact chloroplasts isolated from Pisum sativum L. leaves: requirement for divalent cations. Planta 205 297–304

    Article  CAS  Google Scholar 

  • Rucińska R, Waplak S and Gwóźdź EA 1999 Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol. Biochem. 37 187–194

    Article  Google Scholar 

  • Saiki S-T, Ishida A, Yoshimura K, et al. 2017 Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant. Sci. Rep. 7 2995

    Article  PubMed  PubMed Central  Google Scholar 

  • Salin ML and Bridges SM 1981 Chemiluminescence in wounded root tissue. Plant Physiol. 67 43–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selinski J and Scheibe R 2018 Malate valves: old shuttles with new perspectives. Plant Biol. 21 21–30

    Article  PubMed  Google Scholar 

  • Selinski J, Hartmann A, Kordes A, et al. 2017 Analysis of posttranslational activation of alternative oxidase isoforms. Plant Physiol. 174 2113–2127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stieger PA and Feller U 1997 Degradation of stromal proteins in pea (Pisum sativum L.) chloroplasts under oxidising conditions. J. Plant Physiol. 151 556–562

    Article  CAS  Google Scholar 

  • Strand DD, Fisher N, Davis GA, et al. 2016 Redox regulation of the antimycin A sensitive pathway of cyclic electron flow around photosystem I in higher plant thylakoids. Biochim. Biophys. Acta 1857 1–6

    Article  PubMed  CAS  Google Scholar 

  • Strodtkötter I, Padmasree K, Dinakar C, et al. 2009 Induction of the AOX1D isoform of alternative oxidase in A. thaliana T-DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with Antimycin A. Mol. Plant 2 284–297

    Article  PubMed  Google Scholar 

  • Stührwohldt N, Bühler E, Sauter M, et al. 2021 Phytosulfokine (PSK) precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis. J. Exp. Bot. 72 3427–3440

    Article  PubMed  Google Scholar 

  • Taira Y, Okegawa Y, Sugimoto K, et al. 2013 Antimycin A-like molecules inhibit cyclic electron transport around photosystem I in ruptured chloroplasts. FEBS Open Bio. 3 406–410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tátrai ZA, Sanoubar R, Pluhár Z, et al. 2016 Morphological and physiological plant responses to drought stress in Thymus citriodorus. Int. J. Agron. 2016 1–8

    Article  Google Scholar 

  • Time A and Acevedo E 2020 Effects of water deficits on Prosopis tamarugo growth, water status and stomata functioning. Plants 10 53

    Article  PubMed  PubMed Central  Google Scholar 

  • Towbin H, Staehelin T and Gordon J 1979 Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76 4350–4354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanlerberghe GC, Martyn GD and Dahal K 2016 Alternative oxidase: A respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress. Physiol. Plant. 157 322–337

    Article  PubMed  CAS  Google Scholar 

  • Vidal G, Ribas-Carbo M, Garmier M, et al. 2007 Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco. Plant Cell 19 640–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vishwakarma A, Bashyam L, Senthilkumaran B, et al. 2014 Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana. Plant Physiol. Biochem. 81 44–53

    Article  PubMed  CAS  Google Scholar 

  • Vishwakarma A, Tetali SD, Selinski J, et al. 2015 Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. Ann. Bot. 116 555–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voon CP, Law Y-S, Guan X, et al. 2021 Modulating the activities of chloroplasts and mitochondria promotes ATP production and plant growth. Quant. Plant Biol. 2 e7

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker BJ, Kramer DM, Fisher N, et al. 2020 Flexibility in the energy balancing network of photosynthesis enables safe operation under changing environmental conditions. Plants 9 301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Li G, Sun H, et al. 2018 Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol. Open 7 bio035279

  • Wei L-J, Deng X-G, Zhu T, et al. 2015 Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front. Plant Sci. 6 982

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodbury W, Spencer A and Stahmann M 1971 An improved procedure using ferricyanide for detecting catalase isozymes. Anal. Biochem. 44 301–305

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z-S, Liu M-J, Scheibe R, et al. 2017 Contribution of the alternative respiratory pathway to PSII photoprotection in C3 and C4 plants. Mol. Plant 10 131–142

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Yu X, Ottosen CO, et al. 2017 Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 17 24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Luo X, Nawaz G, et al. 2020 Physiological and biochemical responses of four cassava cultivars to drought stress. Sci. Rep. 10 6968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zivcak M, Brestic M, Balatova Z, et al. 2013 Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth. Res. 117 529–546

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Nehru, lab assistant, for technical support. The Department of Life Sciences, Central University of Tamil Nadu, is acknowledged for the facilities provided.

Funding

This work was supported by the grant to DC from SERB funded projects (NO/SB/EMEQ-299/2014) and (CRG/2021/005916).

Author information

Authors and Affiliations

Authors

Contributions

CD and AB designed the experiments. AB performed the experiments. CD obtained the funding for the research. AB, CD, and BK analyzed the data and wrote the manuscript. All authors approved the publication.

Corresponding author

Correspondence to Dinakar Challabathula.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest. The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Compliance with ethical standards

The information and work involved in this paper is submitted with the ethical standards.

Additional information

Corresponding editor: Ko Noguchi

This article is part of the Topical Collection: Plant Mitochondria: Properties and Interactions with Other Organelles.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Analin, B., Bakka, K. & Challabathula, D. Exacerbation of drought-induced physiological and biochemical changes in leaves of Pisum sativum upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. J Biosci 49, 5 (2024). https://doi.org/10.1007/s12038-023-00380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00380-0

Keywords

Navigation