Skip to main content
Log in

Fractional-order non-Fick mechanical-diffusion coupling model based on new fractional derivatives and structural transient dynamic responses of multilayered composite laminates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Nano-batteries have been widely used in electric vehicles, new energy, and aerospace engineering since their high energy density, low manufacturing cost, and long cycle life. In recent years, there have been many papers that contributed to investigate the diffusion-mechanical coupling problems under non-uniform molar concentration environments (e.g., rapid charging, etc.). Nevertheless, the memory dependence of strain relaxation and mass transfer has not been considered yet. This paper aims to construct a unified fractional-order non-Fick mechanical-diffusion coupling model by introducing the fractional derivatives of the Caputo (C), Caputo–Fabrizio (CF), Atangana–Baleanu (AB), and Tempered-Caputo (TC) types. The proposed theoretical model is applied to investigate structural transient dynamic responses of multilayered composite laminates with imperfect interfacial conditions by Laplace transformation approach. The influences of different fractional derivatives, imperfect interfacial conditions, and materials constants ratios on the wave propagations and dynamic mechanical-diffusion responses are evaluated and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011)

    Article  CAS  Google Scholar 

  2. Goriparti, S., Miele, E., Angelis, F.D., Fabrizio, E.D., Zaccaria, R.P., Capiglia, C.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power. Sources 257, 421–443 (2014)

    Article  ADS  CAS  Google Scholar 

  3. Zhu, G.L., Zhao, C.Z., Huang, J.Q., He, C., Zhang, J., Chen, S., Xu, L., Yuan, H., Zhang, Q.: Fast charging lithium batteries: Recent progress and future prospects. Small 15(15), 1805389 (2019)

    Article  Google Scholar 

  4. Yang, F.Q.: Interaction between diffusion and chemical stresses. Mat. Sci. Eng. A Struct. 409, 153–159 (2005)

    Article  Google Scholar 

  5. Prussin, S.: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32, 1876–1881 (1961)

    Article  ADS  CAS  Google Scholar 

  6. Yang, Q.S., Liu, B.S.: Constitutive law and FEM equation of chemo-mechanical coupling. J. Beijing. Univ. Technol. 34, 120–125 (2008)

    Google Scholar 

  7. Khanchehgardan, A., Rezazadeh, G., Shabani, R.: Effect of mass diffusion on the damping ratio in micro-beam resonators. Int. J. Solids Struct. 51, 3147–3155 (2014)

    Article  Google Scholar 

  8. Le, T.D., Lasseux, D., Nguyen, X.P., Vignoles, G., Mano, N., Kuhn, A.: Multi-scale modeling of diffusion and electrochemical reactions in porous micro-electrodes. Chem. Eng. Sci. 173, 153–167 (2017)

    Article  CAS  Google Scholar 

  9. Yang, F.Q.: Diffusion-induced bending of viscoelastic beams. Int. J. Mech. Sci. 131, 137–145 (2017)

    Article  Google Scholar 

  10. Eom, K.S., Joshi, T., Bordes, A., Do, I.: Fuller TF The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode. J. Power. Sources 249, 118–124 (2014)

    Article  ADS  CAS  Google Scholar 

  11. Sun, F., Xiong, R., He, H.: A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique. Appl. Energy 162, 1399–1409 (2016)

    Article  ADS  Google Scholar 

  12. Wang, Y.Z., Li, F.M., Huang, W.H., Yue, S.W.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56(4), 1578–1590 (2008)

    Article  ADS  Google Scholar 

  13. Li, Z.N., Wang, Y.Z., Wang, Y.S.: Nonreciprocal phenomenon in nonlinear elastic wave metamaterials with continuous properties. Int. J. Solids Struct. 150, 125–134 (2018)

    Article  Google Scholar 

  14. Li, Z.N., Wang, Y.Z., Wang, Y.S.: Tunable nonreciprocal transmission in nonlinear elastic wave metamaterial by initial stresses. Int. J. Solids Struct. 182, 218–235 (2020)

    Article  Google Scholar 

  15. Miao, Z.H., Wang, Y.Z.: Non–symmetric transmission of nonlinear elastic waves across a corrugated interface between two half–spaces. Mech. Mater. 165, 104187 (2022)

    Article  Google Scholar 

  16. Larcht, F.C., Cahn, J.L.: The effect of self-stress on diffusion in solids. Acta Metall. 30(10), 1835–1845 (1982)

    Article  Google Scholar 

  17. Gorsky, W.S.: Theory of elastic after effect in unordered mixed crystals (elastic after effect of the second kind). Zeit. Phys. Soviet. U. 8, 457–471 (1935)

    Google Scholar 

  18. Peters, G.P., Smith, D.W.: The influence of advective transport on coupled chemical and mechanical consolidation of clays. Mech. Mater. 36, 467–486 (2004)

    Article  Google Scholar 

  19. Das, A.K.: Some non-Fickian diffusion equations: Theory and applications. Trans Tech Publ 162, 97–118 (1998)

    Google Scholar 

  20. Jiang, F.M., Liu, D.Y.: Instantaneous thin layer” model for non-Fick mass transfer. J. Appl. Sci. 19, 95–99 (2001)

    Google Scholar 

  21. Suo, Y.H., Shen, S.P.: Dynamical theoretical model and variational principles for coupled temperature–diffusion–mechanics. Acta Mech. 223, 29–41 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kuang, Z.B.: Energy and entropy equations in coupled nonequilibrium thermal mechanical diffusive chemical heterogeneous system. Sci. Bull. 60, 952–957 (2015)

    Article  CAS  Google Scholar 

  23. Hosseini, S.M., Sladek, J., Sladek, V.: Application of meshless local integral equations to two dimensional analysis of coupled non-Fick diffusion–elasticity. Eng. Anal. Boundary Elem. 37(3), 603–615 (2013)

    Article  MathSciNet  Google Scholar 

  24. Hosseini, S.A., Abolbashari, M.H., Hosseini, S.M.: Shock-induced molar concentration wave propagation and coupled non-Fick diffusion–elasticity analysis using an analytical method. Acta Mech. 225(12), 3591–3599 (2014)

    Article  MathSciNet  Google Scholar 

  25. Hosseini, S.M.: Shock-induced two dimensional coupled non-Fickian diffusion-elasticity analysis using meshless generalized finite difference (GFD) method. Eng. Anal. Boundary Elem. 61, 232–240 (2015)

    Article  MathSciNet  Google Scholar 

  26. Suo, Y.H., Shen, S.P.: Analytical solution for one-dimensional coupled non-Fick diffusion and mechanics. Arch. Appl. Mech. 83, 397–411 (2013)

    Article  ADS  Google Scholar 

  27. Li, C.L., Lu, Y.N., He, T.H.: An investigation into size-dependent dynamic mechanical-diffusion responses of multi-layered laminated sandwich-like nanocomposites under shock loadings of molar concentration for vibration control based on nonlocal diffusion-elasticity theory. Mech. Adv. Mater. Struct. 30(4), 647–660 (2023)

    Article  CAS  Google Scholar 

  28. Li, C.L., Lu, Y.N., Guo, H.L., He, T.H., Tian, X.G.: Non-Fick diffusion–elasticity based on a new nonlocal dual-phase-lag diffusion model and its application in structural transient dynamic responses. Acta Mech. 234, 2745–2761 (2023)

    Article  MathSciNet  Google Scholar 

  29. Li, C.L., Guo, H.L., Tian, X.G., He, T.H.: Nonlocal diffusion-elasticity based on nonlocal mass transfer and nonlocal elasticity and its application in shock-induced responses analysis. Mech. Adv. Mater. Struct. 28(8), 827–838 (2021)

    Article  Google Scholar 

  30. Guo, H.L., He, T.H., Tian, X.G., Shang, F.L.: Size-dependent mechanical-diffusion responses of multilayered composite nanoplates. Wave. Random. Complex. 31(6), 2355–2384 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  31. Liu, L., Yang, S., Feng, L., Xu, Q., Liu, F.: Memory dependent anomalous diffusion in comb structure under distributed order time fractional dual-phase-lag model. Int. J. Biomath. 14, 2150048 (2021)

    Article  MathSciNet  Google Scholar 

  32. Mozafarifard, M., Toghraie, D.: Time-fractional subdiffusion model for thin metal films under femtosecond laser pulses based on Caputo fractional derivative to examine anomalous diffusion process. Int. J. Heat. Mass. Transfer. 153, 119592 (2020)

    Article  CAS  Google Scholar 

  33. Zhao, G.B., Shi, S.H., Gu, B.D., He, T.H.: Thermoelastic damping analysis to nano-resonators utilizing the modified couple stress theory and the memory-dependent heat conduction model. J. Vib. Eng. Technol. 10(2), 715–726 (2022)

    Article  Google Scholar 

  34. Abouelregal, A.E.: A comparative study of a thermoelastic problem for an infinite rigid cylinder with thermal properties using a new heat conduction model including fractional operators without non-singular kernels. Arch. Appl. Mech. 92(11), 3141–3161 (2022)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Gupta, V., Kumar, R., Kumar, M., Pathania, V., Barak, M.S.: Reflection/transmission of plane waves at the interface of an ideal fluid and nonlocal piezothermoelastic medium. Int. J. Numer. Method. H. 33(2), 912–937 (2023)

    Article  Google Scholar 

  36. Barak, M.S., Kumar, R., Kumar, R., Gupta, V.: The effect of memory and stiffness on energy ratios at the interface of distinct media. Multidiscip. Model. Ma. 19(3), 464–492 (2023)

    CAS  Google Scholar 

  37. Barak, M.S., Kumar, R., Kumar, R., Gupta, V.: Energy analysis at the boundary interface of elastic and piezothermoelastic half-spaces. Indian. J. Phys. 1–15 (2023)

  38. Gupta, V., Kumar, R., Kumar, R., Barak, M.S.: Energy analysis at the interface of piezo/thermoelastic half spaces. Int. J. Numer. Method. H. 33(6), 2250–2277 (2023)

    Article  Google Scholar 

  39. Barak, M.S., Gupta, V.: Memory-dependent and fractional order analysis of the initially stressed piezo-thermoelastic medium. Mech. Adv. Mater. Struct. 1–15 (2023)

  40. Gupta, V., Barak, M.S.: Quasi-P wave through orthotropic piezo-thermoelastic materials subject to higher order fractional and memory-dependent derivatives. Mech. Adv. Mater. Struct. 1–15 (2023)

  41. Yu, Y.J., Xue, Z.N., Tian, X.G.: A modified Green-Lindsay thermoelasticity with strain rate to eliminate the discontinuity. Meccanica 53, 2543–2554 (2018)

    Article  MathSciNet  Google Scholar 

  42. Li, C.L., Guo, H.L., He, T.H., Tian, X.G.: A complete rate-dependent constitutive model of thermo-elasto-diffusive coupling and its application in structural dynamic responses analysis of multi-layered laminated sandwich composites subjected to axisymmetric heat and chemical shock loadings. Appl. Math. Model. 105, 284–306 (2022)

    Article  MathSciNet  Google Scholar 

  43. Magin, R.L., Royston, T.J.: Fractional-order elastic models of cartilage: a multiscale approach. Commun. Nonlinear Sci. Numer. Simul. 15, 657–664 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  44. Li, C.L., Guo, H.L., Tian, X.G., He, T.H.: Generalized thermoelastic diffusion problems with fractional order strain. Eur. J. Mech. A-solid. 78, 103827 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  45. Li, C.L., Tian, X.G., He, T.H.: Transient thermomechanical responses of multilayered viscoelastic composite structure with non-idealized interfacial conditions in the context of generalized thermoviscoelasticity theory with time-fractional order strain. J. Therm. Stress. 43(7), 895–928 (2020)

    Article  Google Scholar 

  46. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular Kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  47. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  48. Li, C., Deng, W., Zhao, L.: Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete. Contin. Dyn. Syst. 24(4), 1989–2015 (2019)

    MathSciNet  Google Scholar 

  49. Yu, Y.J., Zhao, L.J.: Fractional thermoelasticity revisited with new definitions of fractional derivative. Eur. J. Mech. A-Solid. 84, 104043 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  50. Yu, Y.J., Deng, Z.C.: Fractional order thermoelasticity for piezoelectric materials. Fractals 29, 2150082 (2021)

    Article  ADS  Google Scholar 

  51. Brancik, L.: Programs for fast numerical inversion of laplace transforms in MATLAB language environment. Proc. Seventh. Prague. Conf. MATLAB. 99, 27–39 (1999)

    Google Scholar 

  52. Li, C.L., Guo, H.L., Tian, X.G., He, T.H.: Time-domain finite element method to generalized diffusion-elasticity problems with the concentration-dependent elastic constants and the diffusivity. Appl. Math. Modell. 87, 55–76 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Special Funds for Guiding Local Scientific and Technological Development by the Central Government (22ZY1QA005), National Natural Science Foundation of China (11972176, 12362014), Young Science and Technology Talents Lift Project of Gansu Province, Natural Science Foundation of Gansu Province (21JR1RA241), Young Doctoral Fund Project of Higher Education Institutions of Gansu Province (2022QB-066), Basic Research Innovation Group Project of Gansu Province (21JR7RA347), Opening Project from the State Key Laboratory for Strength and Vibration of Mechanical Structures (SV2019-KF-30, SV2021-KF-20), Basic Research Top-notch Talent Project of Lanzhou Jiaotong University, Tianyou Youth Talent Lift Program of Lanzhou Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenlin Li.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Li, C. & He, T. Fractional-order non-Fick mechanical-diffusion coupling model based on new fractional derivatives and structural transient dynamic responses of multilayered composite laminates. Arch Appl Mech 94, 239–259 (2024). https://doi.org/10.1007/s00419-023-02518-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02518-w

Keywords

Navigation