Skip to main content
Log in

Hanke–Raus rule for Landweber iteration in Banach spaces

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a heuristic parameter choice rule for choosing the regularization parameter which does not require the information on the noise level, so it is purely data-driven. According to a famous veto, convergence in the worst-case scenario cannot be expected in general. However, by imposing certain conditions on the noisy data, we establish a new convergence result which, in addition, requires neither the Gâteaux differentiability of the forward operator nor the reflexivity of the image space. Therefore, we also expand the applied range of the Landweber iteration to cover non-smooth ill-posed inverse problems and to handle the situation that the data is contaminated by various types of noise. Numerical simulations are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems, vol. 90. Elsevier Academic Press, Amsterdam (2005)

    Book  Google Scholar 

  2. Bakushinskii, A.B.: Remarks on choosing a regularization parameter using the quasioptimality and ratio criterion. USSR Comput. Math. Math. Phys. 24(4), 181–182 (1984)

    Article  Google Scholar 

  3. Boţ, R.I., Hein, T.: Iterative regularization with a geeral penalty term—theory and applications to L1 and TV regularization. Inverse Probl. 28 (2012)

  4. Christof, C., Meyer, C., Walther, S., Clason, C.: Optimal control of a non-smooth semilinear elliptic equation. Math. Control Relat. Fields 8(1), 247–276 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings, and Nonlinear Problems. Kluwer, Dordrecht (1990)

    Book  Google Scholar 

  6. Clason, C.: \(L^\infty \) fitting for inverse problems with uniform noise. Inverse Probl. 28(10), 104007 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  7. Clason, C., Nhu, V.H.: Bouligand–Landweber iteration for a non-smooth ill-posed problem. Numer. Math. 142(4), 789–832 (2019)

    Article  MathSciNet  Google Scholar 

  8. Fu, Z., Jin, Q., Zhang, Z., Han, B., Chen, Y.: Analysis of a heuristic rule for the IRGNM in Banach spaces with convex regularization terms. Inverse Probl. 36(7), 75002 (2020)

    Article  MathSciNet  Google Scholar 

  9. Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72(1), 21–37 (1995)

    Article  MathSciNet  Google Scholar 

  10. Hanke, M., Raus, T.: A general heuristic for choosing the regularization parameter in ill-posed problems. SIAM J. Sci. Comput. 17(4), 956–972 (1996)

    Article  MathSciNet  Google Scholar 

  11. Hubmer, S., Sherina, E., Kindermann, S., Raik, K.: A numerical comparison of some heuristic stopping rules for nonlinear Landweber iteration. Electron. Trans. Numer. Anal. 57, 216–241 (2022). https://doi.org/10.1553/etna_vol57s216

    Article  MathSciNet  Google Scholar 

  12. Jin, B., Lorenz, D.A.: Heuristic parameter-choice rules for convex variational regularization based on error estimates. SIAM J. Numer. Anal. 48(3), 1208–1229 (2010)

    Article  MathSciNet  Google Scholar 

  13. Jin, Q.: Hanke–Raus heuristic rule for variational regularization in Banach spaces. Inverse Probl. 32(8) (2016)

  14. Jin, Q.: Inexact Newton-Landweber iteration in Banach spaces with nonsmooth convex penalty terms. SIAM J. Numer. Anal. 53(5), 2389–2413 (2015)

    Article  MathSciNet  Google Scholar 

  15. Jin, Q.: Landweber–Kaczmarz method in Banach spaces with inexact inner solvers. Inverse Probl. 32(10), 104005 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  16. Jin, Q.: On a heuristic stopping rule for the regularization of inverse problems by the augmented Lagrangian method. Numer. Math. 136(4), 973–992 (2016)

    Article  MathSciNet  Google Scholar 

  17. Jin, Q.: On a regularized Levenberg–Marquardt method for solving nonlinear inverse problems. Numer. Math. 115(2), 229–259 (2010)

    Article  MathSciNet  Google Scholar 

  18. Jin, Q., Wang, W.: Analysis of the iteratively regularized Gauss–Newton method under a heuristic rule. Inverse Probl. 34(3) (2018)

  19. Jin, Q., Wang, W.: Landweber iteration of Kaczmarz type with general non-smooth convex penalty functionals. Inverse Probl. 29(8), 1–22 (2013)

    Article  MathSciNet  Google Scholar 

  20. Kaltenbacher, B., Schöpfer, F., Schuster, T.: Iterative methods for nonlinear inverse ill-posed problems in Banach spaces: convergence and applications to parameter identification problems. Inverse Probl. 25(6) (2009)

  21. Kikuchi, F., Nakazato, K., Ushijima, T.: Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria. Jpn. J. Appl. Math. 1(2), 369–403 (1984)

    Article  MathSciNet  Google Scholar 

  22. Liu, H., Real, R., Lu, X., Jia, X., Jin, Q.: Heuristic discrepancy principle for variational regularization of inverse problems. Inverse Probl. 36(7) (2020)

  23. Rappaz, J.: Approximation of a nondifferentiable nonlinear problem related to MHD equilibria. Numer. Math. 45(1), 117–133 (1984)

    Article  MathSciNet  Google Scholar 

  24. Real, R., Jin, Q.: A revisit on Landweber iteration. Inverse Probl. 36(7), 75011 (2020)

    Article  MathSciNet  Google Scholar 

  25. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  26. Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22(1) (2006)

  27. Schuster, T., Kaltenbacher, B., Hofmann, B., Kazimierski, K.: Regularization Methods in Banach Spaces, vol. 10. Walter de Gruyter GmbH Co.KG, Berlin (2012)

    Book  Google Scholar 

  28. Temam, R.: A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Ration. Mech. Anal. 60(1), 51–73 (1975/76)

  29. Tröltzsch, F.: Optimal Control of Partial Differential Equations, vol. 112. Graduate Studies in Mathematics. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI, pp. xvi+399 (2010)

  30. Zhang, Z., Jin, Q.: Heuristic rule for non-stationary iterated Tikhonov regularization in Banach spaces. Inverse Probl. 34(11), 115002 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  31. Zhong, M., Wang, W., Jin, Q.: Regularization of inverse problems by two-point gradient methods in Banach spaces. Numer. Math. 143(3), 713–747 (2019)

    Article  MathSciNet  Google Scholar 

  32. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. In: UCLA CAM Report (May 2008)

  33. Zǎlinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge, NJ (2002)

    Book  Google Scholar 

Download references

Acknowledgements

The author also would like to thank Dr. Qinian Jin for the guidance in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommel R. Real.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Real, R.R. Hanke–Raus rule for Landweber iteration in Banach spaces. Numer. Math. 156, 345–373 (2024). https://doi.org/10.1007/s00211-023-01389-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-023-01389-1

Mathematics Subject Classification

Navigation