Skip to main content
Log in

Hyperbolic Attractors Which are Anosov Tori

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider a topologically mixing hyperbolic attractor \(\Lambda\subset M^{n}\) for a diffeomorphism \(f:M^{n}\to M^{n}\) of a compact orientable \(n\)-manifold \(M^{n}\), \(n>3\). Such an attractor \(\Lambda\) is called an Anosov torus provided the restriction \(f|_{\Lambda}\) is conjugate to Anosov algebraic automorphism of \(k\)-dimensional torus \(\mathbb{T}^{k}\). We prove that \(\Lambda\) is an Anosov torus for two cases: 1) \(\dim{\Lambda}=n-1\), \(\dim{W^{u}_{x}}=1\), \(x\in\Lambda\); 2) \(\dim\Lambda=k,\dim W^{u}_{x}=k-1,x\in\Lambda\), and \(\Lambda\) belongs to an \(f\)-invariant closed \(k\)-manifold, \(2\leqslant k\leqslant n\), topologically embedded in \(M^{n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Let \(f:N\to M\) be a \(C^{1}\)-mapping. A point \(\in N\)is called a regular point if a differential \(Df\) is reversible. A point \(y\in M\) is called a regular value if the whole preimage\(f^{-1}(y)\) consists of regular points. Let \(y\in M\) be a regular value and for each \(x\in f^{-1}(y)\) let \(\varepsilon_{x}=1\) if \(Df(x)\) preserves orientation and \(\varepsilon_{x}=-1\) if \(Df(x)\) reverses orientation. Then a degree of the mapping f in the point y is defined as \(\deg_{y}(f)=\sum\limits_{x\in f^{-1}(y)}\varepsilon_{x}\). \(\deg_{y}(f)\) does not depend on a choice of a regular value \(y\in M\), so the degree of the mapping \(f\) can be defined as \(\deg(f)=\deg_{y}(f)\) where \(y\) is an arbitrary regular value of \(f\).

  2. DA-diffeomorphism is a cascade on a torus \(\mathbb{T}^{2}\), first described by S. Smale in [18], which has a one-dimensional hyperbolic attractor and a fixed source and is obtained from an Anosov diffeomorphism via “Smale surgery”.

References

  1. Anosov, D. V., On a Class of Invariant Sets of Smooth Dynamical Systems, in Proc. of the 5th Internat. Conf. on Nonlinear Oscillations: Vol. 2, Kiev: Math. Inst. Ukrainian Acad. Sci., 1970, pp. 39–45 (Russian).

  2. Bowen, R., Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 1971, vol. 154, pp. 377–397.

    MathSciNet  Google Scholar 

  3. Brown, A. W., Nonexpanding attractors: conjugacy to algebraic models and classification in 3-manifolds, J. Mod. Dyn., 2010, vol. 4, no. 3, pp. 517–548.

    MathSciNet  Google Scholar 

  4. Eilenberg, S. and Steenrod, N., Foundations of Algebraic Topology, Princeton, N.J.: Princeton Univ. Press, 1952.

    Book  Google Scholar 

  5. Franks, J., Anosov diffeomorphisms, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 61–93.

    Chapter  Google Scholar 

  6. Grines, V. Z., Medvedev, V. S., and Zhuzhoma, E. V., On surface attractrs and repellers in 3-manifolds, Math. Notes, 2005, vol. 78, no. 6, pp. 757–767; see also: Mat. Zametki, 2005, vol. 78, no. 6, pp. 813–826.

    Article  MathSciNet  Google Scholar 

  7. Grines, V. and Zhuzhoma, E., Surface Laminaions and Chaotic Dynamical Systems, Izhevsk: R&C Dynamics, Institute of Computer Science, 2021.

  8. Hillman, J. A., Four-Manifolds, Geometries and Knots, Geom. Topol. Monogr., vol. 5, Sydney: Univ. of Sydney, 2002.

    Google Scholar 

  9. Hsiang, W.-C. and Wall, C. T. C., On homotopy tori: 2, Bull.London Math. Soc., 1969, vol. 1, pp. 341–342.

    Article  MathSciNet  Google Scholar 

  10. Hurewicz, W. and Wallman, H., Dimension theory, Princeton Math. Ser., vol. 4, Princeton, N.J.: Princeton Univ. Press, 1941.

  11. Jiang, B., Wang, S., and Zheng, H., No embeddings of solenoids into surfaces, Proc. Amer. Math. Soc., 2008, vol. 136, no. 10, pp. 3697–3700.

    Article  MathSciNet  Google Scholar 

  12. Katok, A. and Hasselblat, B., Introduction to the Modern Theory of Dynamical Systems. Encyclopedia Math. Appl., vol. 54, Cambridge: Cambridge Univ. Press, 1995. (Supplement by A. Katok and L. Mendoza: Dynamical Systems with Nonuniformly Hyperbolic Behavior, pp. 659–699.)

    Book  Google Scholar 

  13. Newhouse, S., On Codimension One Anosov Diffeomorphisms, Amer. J. Math., 1970, vol. 92, no. 3, pp. 761–770.

    Article  MathSciNet  Google Scholar 

  14. Novikov, S. P., Topology of foliations, Trans. Moscow Math. Soc., 1967, vol. 14, pp. 268–304; see also: Tr. Mosk. Mat. Obs., 1965, vol. 14, no. 5, pp. 248–278.

    MathSciNet  Google Scholar 

  15. Plykin, R.V., The topology of basic sets for Smale diffeomorphisms, Sb. Math., 1971, vol. 13, no. 2, pp. 297–307; see also: Mat. Sb. (N. S.), 1971, vol. 84(126), no. 2, pp. 301–312.

    Article  Google Scholar 

  16. Plykin, R.V., On the geometry of hyperbolic attractors of smooth cascades, Russian Math. Surveys, 1984, vol. 39, no. 6, pp. 85–131; see also: Uspekhi Mat. Nauk, 1984, vol. 39, no. 6(240), pp. 75–113.

    Article  MathSciNet  Google Scholar 

  17. Rosenberg, H., Foliations by planes, Topology, 1968, vol. 7, pp. 131–138.

    Article  MathSciNet  Google Scholar 

  18. Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc. (NS), 1967, vol. 73, pp. 747–817.

    Article  MathSciNet  Google Scholar 

  19. Stallings, J., The Piecewise-Linear Structure of Euclidean Space, Proc. Cambridge Philos. Soc., 1962, vol. 58, no. 3, pp. 481–488.

    Article  MathSciNet  Google Scholar 

  20. Williams, R. F., Expanding attractors, Publ. Math. Inst. Hautes Etudes Sci., 1974, vol. 43, pp. 169–203.

    Article  MathSciNet  Google Scholar 

  21. Young, G. S., Jr., On the factors and fiberings of manifolds, Proc. Amer. Math. Soc., 1950, vol. 1, pp. 215–223.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by grant 22-11-00027, except Theorem 1, whose proof was supported by the Laboratory of Dynamical Systems and Applications NRU HSE, by the Ministry of Science and Higher Education of the Russian Federation (ag. 075-15-2022-1101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marina K. Barinova, Olga V. Pochinka or Evgeny V. Zhuzhoma.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

PUBLISHER’S NOTE

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MSC2010

37D05

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barinova, M.K., Grines, V.Z., Pochinka, O.V. et al. Hyperbolic Attractors Which are Anosov Tori. Regul. Chaot. Dyn. 29, 369–375 (2024). https://doi.org/10.1134/S1560354723540018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354723540018

Keywords

Navigation