Skip to main content
Log in

Gradient profile for the reconnection of vortex lines with the boundary in type-II superconductors

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In a recent work, Duong, Ghoul and Zaag determined the gradient profile for blowup solutions of standard semilinear heat equation with power nonlinearities in the (supposed to be) generic case. Their method refines the constructive techniques introduced by Bricmont and Kupiainen and further developed by Merle and Zaag. In this paper, we extend their refinement to the problem about the reconnection of vortex lines with the boundary in a type-II superconductor under planar approximation, a physical model derived by Chapman, Hunton and Ockendon featuring the finite time quenching for the nonlinear heat equation

$$\begin{aligned} \frac{\partial h}{\partial t}=\frac{\partial ^2 h}{\partial x^2}+e^{-h}-\frac{1}{h^\beta },\quad \beta >0 \end{aligned}$$

subject to initial boundary value conditions

$$\begin{aligned} h(\cdot ,0)=h_0>0,\quad h(\pm 1,t)=1. \end{aligned}$$

We derive the intermediate extinction profile with refined asymptotics, and with extinction time T and extinction point 0, the gradient profile behaves as \(x\rightarrow 0\) like

$$\begin{aligned} \lim _{t\rightarrow T}\,(\nabla h)(x,t)\quad \sim \quad \frac{1}{\sqrt{2\beta }}\frac{x}{|x|}\frac{1}{\sqrt{|\log |x||}} \left[ \frac{(\beta +1)^2}{8\beta }\frac{|x|^2}{|\log |x||}\right] ^{\frac{1}{\beta +1}-\frac{1}{2}}, \end{aligned}$$

agreeing with the gradient of the extinction profile previously derived by Merle and Zaag. Our result holds with general boundary conditions and in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. in this proposition we used \(2\alpha _0\) rather than \(\alpha _0\) in the shrinking set. Hence we set \(\alpha _0\le \frac{\alpha _1}{2}\).

  2. the latter two components in defining \(\sigma _1\) in (11.10) take care of both \(\beta \ge 1\) and \(\beta \le 1\).

  3. Recall that for \(x_0=0\), we have the general substitutions

    $$\begin{aligned} z=\frac{z}{|z|}|z|\quad \text {and}\quad \frac{z}{|z|}=\frac{x}{|x|}. \end{aligned}$$

    In the situation \(x={\textbf{x}}\) here, this enables us to write

    $$\begin{aligned} z|_{|z|=\frac{K_0}{4}}=\frac{K_0}{4}\frac{{\textbf{x}}}{|{\textbf{x}}|}. \end{aligned}$$

References

  1. Bouthaina Abdelhedi and Hatem Zaag. Construction of a blow-up solution for a perturbed nonlinear heat equation with a gradient and a non-local term. Journal of Differential Equations, 272:1–45, 2021.

    Article  ADS  MathSciNet  Google Scholar 

  2. Bouthaina Abdelhedi and Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems-S, 14(8):2607–2623, 2021.

    Article  MathSciNet  Google Scholar 

  3. John M. Ball. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. The Quarterly Journal of Mathematics, 28(4):473–486, 1977.

    Article  MathSciNet  Google Scholar 

  4. Marsha Berger and Robert V. Kohn. A rescaling algorithm for the numerical calculation of blowing-up solutions. Communications on Pure and Applied Mathematics, 41(6):841–863, 1988.

    Article  MathSciNet  Google Scholar 

  5. Jean Bricmont and Antti Kupiainen. Universality in blow-up for nonlinear heat equations. Nonlinearity, 7(2):539, 1994.

    Article  ADS  MathSciNet  Google Scholar 

  6. Alberto Bressan. On the asymptotic shape of blow-up. Indiana University Mathematics Journal, 39(4):947–960, 1990.

    Article  MathSciNet  Google Scholar 

  7. Alberto Bressan. Stable blow-up patterns. Journal of Differential Equations, 98(1):57–75, 1992.

    Article  ADS  MathSciNet  Google Scholar 

  8. Tristan Buckmaster, Steve Shkoller, and Vlad Vicol. Formation of shocks for 2D isentropic compressible Euler. Communications on Pure and Applied Mathematics, 75(9):2069–2120, 2022.

    Article  MathSciNet  Google Scholar 

  9. Charles Collot, Tej-Eddine Ghoul, Nader Masmoudi, and Van Tien Nguyen. Refined description and stability for singular solutions of the 2D Keller-Segel system. Communications on Pure and Applied Mathematics, 75(7):1419–1516, 2022.

  10. S. J. Chapman, B. J. Hunton, and J. R. Ockendon. Vortices and boundaries. Quarterly of Applied Mathematics, 56(3):507–519, 1998.

    Article  MathSciNet  Google Scholar 

  11. Charles Collot, Frank Merle, and Pierre Raphaël. Strongly anisotropic type II blow up at an isolated point. Journal of the American Mathematical Society, 33(2):527–607, 2020.

    Article  MathSciNet  Google Scholar 

  12. Raphaël Côte and Hatem Zaag. Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension. Communications on Pure and Applied Mathematics, 66(10):1541–1581, 2013.

    Article  MathSciNet  Google Scholar 

  13. Giao Ky Duong, Tej-Eddine Ghoul, and Hatem Zaag. Sharp equivalent for the blowup profile to the gradient of a solution to the semilinear heat equation. arXiv preprint arXiv:2109.03497, pages 1–23, 2021.

  14. Giao Ky Duong, Nikos I. Kavallaris, and Hatem Zaag. Diffusion-induced blowup solutions for the shadow limit model of a singular Gierer-Meinhardt system. Mathematical Models and Methods in Applied Sciences, 31(07):1469–1503, 2021.

  15. Giao Ky Duong, Van Tien Nguyen, and Hatem Zaag. Construction of a stable blowup solution with a prescribed behavior for a non-scaling-invariant semilinear heat equation. Tunisian Journal of Mathematics, 1(1):13–45, 2019.

  16. Giao Ky Duong, Nejla Nouaili, and Hatem Zaag. Construction of blowup solutions for the complex Ginzburg-Landau equation with critical parameters. Memoirs of the American Mathematical Society, to appear, 2019.

  17. Giao Ky Duong, Nejla Nouaili, and Hatem Zaag. Refined asymptotic for the blow-up solution of the complex Ginzburg-Landau equation in the subcritical case. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 39(1):41–85, 2022.

  18. Manuel Del Pino, Monica Musso, and Juncheng Wei. Infinite-time blow-up for the 3-dimensional energy-critical heat equation. Analysis & PDE, 13(1):215–274, 2020.

    Article  MathSciNet  Google Scholar 

  19. Roland Donninger and Birgit Schörkhuber. Stable blow up dynamics for energy supercritical wave equations. Transactions of the American Mathematical Society, 366:2167–2189, 2014.

    Article  MathSciNet  Google Scholar 

  20. Giao Ky Duong. A blowup solution of a complex semi-linear heat equation with an irrational power. Journal of Differential Equations, 267(9):4975–5048, 2019.

  21. Giao Ky Duong and Hatem Zaag. Profile of a touch-down solution to a nonlocal MEMS model. Mathematical Models and Methods in Applied Sciences, 29(07):1279–1348, 2019.

  22. Tarek M. Elgindi, Tej-Eddine Ghoul, and Nader Masmoudi. On the stability of self-similar blow-up for \(C^{1,\alpha }\) solutions to the incompressible Euler equations on \({\mathbb{R}}^3\). Cambridge Journal of Mathematics, 9(4):1035–1075, 2021.

  23. Mohammed Abderrahman Ebde and Hatem Zaag. Construction and stability of a blow up solution for a nonlinear heat equation with a gradient term. SeMA Journal, 55(1):5–21, 2011.

  24. Stathis Filippas and Jong-Shenq Guo. Quenching profiles for one-dimensional semilinear heat equations. Quarterly of Applied Mathematics, 51(4):713–729, 1993.

    Article  MathSciNet  Google Scholar 

  25. Marek Fila, Josephus Hulshof, and Pavol Quittner. The quenching problem on the \(N\)-dimensional ball. In Nonlinear Diffusion Equations and Their Equilibrium States, 3, pages 183–196. Springer, 1992.

  26. Clotilde Fermanian Kammerer, Frank Merle, and Hatem Zaag. Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view. Mathematische Annalen, 317(2):347–387, 2000.

  27. Hiroshi Fujita. On the blowing up of solutions fo the Cauchy problem for \(u_t=\Delta u+u^{1+\alpha }\). Journal of the Faculty of Science, University of Tokyo, 13:109–124, 1966.

    Google Scholar 

  28. Yoshikazu Giga and Robert V. Kohn. Asymptotically self-similar blow-up of semilinear heat equations. Communications on Pure and Applied Mathematics, 38(3):297–319, 1985.

    Article  MathSciNet  Google Scholar 

  29. Yoshikazu Giga and Robert V. Kohn. Characterizing blowup using similarity variables. Indiana University Mathematics Journal, 36(1):1–40, 1987.

    Article  MathSciNet  Google Scholar 

  30. Yoshikazu Giga and Robert V. Kohn. Nondegeneracy of blowup for semilinear heat equations. Communications on Pure and Applied Mathematics, 42(6):845–884, 1989.

    Article  MathSciNet  Google Scholar 

  31. Tej-Eddine Ghoul, Van Tien Nguyen, and Hatem Zaag. Blowup solutions for a nonlinear heat equation involving a critical power nonlinear gradient term. Journal of Differential Equations, 263(8):4517–4564, 2017.

  32. Tej-Eddine Ghoul, Van Tien Nguyen, and Hatem Zaag. Blowup solutions for a reaction-diffusion system with exponential nonlinearities. Journal of Differential Equations, 264(12):7523–7579, 2018.

  33. Tej-Eddine Ghoul, Van Tien Nguyen, and Hatem Zaag. Construction and stability of blowup solutions for a non-variational semilinear parabolic system. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 35(6):1577–1630, 2018.

  34. Jong-Shenq Guo. On the quenching rate estimate. Quarterly of Applied Mathematics, 49(4):747–752, 1991.

    Article  MathSciNet  Google Scholar 

  35. Junichi Harada. A type II blowup for the six dimensional energy critical heat equation. Annals of PDE, 6(2):1–63, 2020.

    Article  MathSciNet  Google Scholar 

  36. Miguel A. Herrero and Juan J. L. Velázquez. Blow-up profiles in one-dimensional semilinear parabolic problems. Communications in Partial Differential Equations, 17(1–2):205–219, 1992.

  37. Miguel A. Herrero and Juan J. L. Velázquez. Flat blow-up in one-dimensional semilinear heat equations. Differential and Integral Equations, 5(5):973–997, 1992.

  38. Miguel A. Herrero and Juan J. L. Velázquez. Blow-up behaviour of one-dimensional semilinear parabolic equations. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 10(2):131–189, 1993.

  39. Otared Kavian. Remarks on the large time behaviour of a nonlinear diffusion equation. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 4(5):423–452, 1987.

    Article  ADS  MathSciNet  Google Scholar 

  40. Joachim Krieger, Wilhelm Schlag, and Daniel Tataru. Slow blow-up solutions for the \({\textbf{H}}^1({\mathbb{R}}^3)\) critical focusing semilinear wave equation. Duke Mathematical Journal, 147(1):1–53, 2009.

  41. Howard A. Levine. Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \(Pu_t=-Au+F(u)\). Archive for Rational Mechanics and Analysis, 51(5):371–386, 1973.

    Article  ADS  MathSciNet  Google Scholar 

  42. Howard A. Levine. Quenching, nonquenching, and beyond quenching for solution of some parabolic equations. Annali di Matematica Pura ed Applicata, 155(1):243–260, 1989.

    Article  MathSciNet  Google Scholar 

  43. Yvan Martel. Asymptotic \(N\)-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. American Journal of Mathematics, 127(5):1103–1140, 2005.

    Article  MathSciNet  Google Scholar 

  44. Frank Merle, Pierre Raphaël, Igor Rodnianski, and Jérémie Szeftel. On blow up for the energy super critical defocusing non linear Schrödinger equations. Inventiones Mathematicae, 227:247–413, 2022.

    Article  ADS  MathSciNet  Google Scholar 

  45. Frank Merle, Pierre Raphaël, Igor Rodnianski, and Jérémie Szeftel. On the implosion of a three dimensional compressible fluid I & II. Annals of Mathematics, 196(2):567–778 & 779–889, 2022.

  46. Frank Merle, Pierre Raphaël, and Jérémie Szeftel. On strongly anisotropic type I blowup. International Mathematics Research Notices, 2020(2):541–606, 2020.

    MathSciNet  Google Scholar 

  47. Frank Merle and Hatem Zaag. Reconnection of vortex with the boundary and finite time quenching. Nonlinearity, 10(6):1497–1550, 1997.

    Article  ADS  MathSciNet  Google Scholar 

  48. Frank Merle and Hatem Zaag. Stability of the blow-up profile for equations of the type \(u_t= \Delta u+|u|^{p-1}u\). Duke Mathematical Journal, 86(1):143–195, 1997.

    Article  MathSciNet  Google Scholar 

  49. Nader Masmoudi and Hatem Zaag. Blow-up profile for the complex Ginzburg-Landau equation. Journal of Functional Analysis, 255(7):1613–1666, 2008.

    Article  MathSciNet  Google Scholar 

  50. Nejla Nouaili and Hatem Zaag. Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation. Communications in Partial Differential Equations, 40(7):1197–1217, 2015.

    Article  MathSciNet  Google Scholar 

  51. Van Tien Nguyen and Hatem Zaag. Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 16(4):1275–1314, 2016.

    MathSciNet  Google Scholar 

  52. Van Tien Nguyen and Hatem Zaag. Finite degrees of freedom for the refined blow-up profile of the semilinear heat equation. Annales Scientifiques de l’École Normale Supérieure, 50(5):1241–1282, 2017.

    Article  MathSciNet  Google Scholar 

  53. Nejla Nouaili and Hatem Zaag. Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case. Archive for Rational Mechanics and Analysis, 228(3):995–1058, 2018.

    Article  ADS  MathSciNet  Google Scholar 

  54. Pierre Raphaël and Rémi Schweyer. On the stability of critical chemotactic aggregation. Mathematische Annalen, 359(1):267–377, 2014.

    Article  MathSciNet  Google Scholar 

  55. Slim Tayachi and Hatem Zaag. Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term. Transactions of the American Mathematical Society, 371(8):5899–5972, 2019.

    Article  MathSciNet  Google Scholar 

  56. Hatem Zaag. Blow-up results for vector-valued nonlinear heat equations with no gradient structure. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 15(5):581–622, 1998.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author (YCH) is supported by the National Natural Science Foundation grant of China (no. 11801274). This paper is completed while YCH is on leave, funded by China Scholarship Council Postdoctoral/Visiting Scholar Program (no. 202006865011), at Université Sorbonne Paris Nord. YCH would like to thank Profs P. Auscher and H. Yin for early influences towards parabolic regularity and singularity formation of semilinear wave equations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi C. Huang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Direct regularity estimates via the shrinking set

We collect in this appendix some elementary estimates on \((q,\nabla q)\), B(q) and T(q) that are direct (not trivial however) consequences of the shrinking set conditions.

Lemma A.1

(Elementary estimates on \((q,\nabla q)\)) For all \(K_0\ge 1\) and \(\varepsilon _0>0\), there exists \(t_6=t_6(K_0,\varepsilon _0)<T\) such that for all \(t_0\in [t_6,T)\), for all \(A\ge 1\), \(\alpha _0>0\), \(C_0>0\), \(\delta _0\le \frac{\widehat{k}(1)}{2}\) and \(\eta _0\le \eta _6(\varepsilon _0)\) for some \(\eta _6(\varepsilon _0)>0\), we have the following property:

If h is the solution to (1.1), generated by the initial data \(h(t_0\text {;}d_0,d_1)\) defined in (5.1), that further satisfies

$$\begin{aligned} \forall \,\, t\in [t_0,T],\quad h(t)\in S^*(t_0, K_0, \varepsilon _0, A,\alpha _0,\delta _0, C_0,\eta _0,t), \end{aligned}$$

then for some \(C=C(K_0,C_0)>1\)

$$\begin{aligned}{} & {} \Vert q(\cdot ,s)\Vert _{L^\infty }\le C \frac{A^{{\overline{\alpha }}}\log s}{s}, \end{aligned}$$
(A.1)
$$\begin{aligned}{} & {} \left\| \frac{ q(\cdot ,s)}{1+|\cdot |^3}\right\| _{L^\infty }\le C\frac{A^{2}\log s}{ s^2}, \end{aligned}$$
(A.2)
$$\begin{aligned}{} & {} \Vert {(\nabla q)_e(\cdot ,s)}\Vert _{L^\infty }\le \frac{C}{\sqrt{s}}, \end{aligned}$$
(A.3)

where \(s=-\log (T-t)\) and q is defined in (3.8).

Proof

By the definition of \(h(t)\in S^*(t_0,t)\), then \(q(s)\in V_{K_0,A}(s)\), and we have

$$\begin{aligned} |q_b(y,s)|{} & {} \le \chi (y,s)\left( \sum _{m=0}^2|q_m(s)||h_m(y)|+|q_-(y,s)|\right) \nonumber \\{} & {} \le C\chi (y,s)\left( \frac{A}{s^2}(1+|y|)+\frac{A^2\log s}{s^2}(1+|y|^2)+\frac{A^{{\underline{\alpha }}} \log s}{s^{\frac{5}{2}}}(1+|y|^3)\right) \nonumber \\{} & {} \le C\frac{A^2\log s}{s^2}\left( 1+(2K_0\sqrt{s})^2\right) +C\frac{A^{{\underline{\alpha }}}\log s}{s^{\frac{5}{2}}} \left( 1+(2K_0\sqrt{s})^3\right) \nonumber \\{} & {} \le C K_0^3\frac{A^{{\underline{\alpha }}}\log s}{s}, \end{aligned}$$
(A.4)

which, combined with (4.1) on \(q_e\), proves (A.1). We used \(K_0\ge 1\), \(A\ge 1\) and \({\underline{\alpha }}\ge 2\).

Meanwhile, we infer from the derivation in (A.4) that for s large enough,

$$\begin{aligned} |q_b(y,s)|\le C\chi (y,s)\frac{A^2\log s}{s^2}(1+|y|^3), \end{aligned}$$
(A.5)

whereas by (4.1) on \(q_e\)

$$\begin{aligned} |q_e(y,s)|\le (1-\chi (y,s)) \frac{A^{{\overline{\alpha }}}\log s}{s}\le C(1-\chi (y,s))\frac{A^{{\overline{\alpha }}}\log s}{s^{\frac{5}{2}}}(1+|y|^3).\nonumber \\ \end{aligned}$$
(A.6)

From above two estimates, (A.2) follows immediately.

For the remaining estimates, first we observe that

$$\begin{aligned} |(\nabla (\varphi +q))_e(y,s)|\le \frac{C(K_0,C_0)}{\sqrt{s}}. \end{aligned}$$
(A.7)

This estimate is taken from the proof of [47, Lemma B.1], which uses only the Parts (ii)–(iii) information of the shrinking set (hence remains valid in our setting), together with the exterior part information of \(h(\cdot ,t_0\text {;}d_0,d_1)\). Note that the modification in Part (iii) of the shrinking set is harmless. Moreover, the constraints

$$\begin{aligned} \delta _0\le \frac{\widehat{k}(1)}{2}\quad \text {and}\quad \eta _0\le \eta _6(\varepsilon _0) \end{aligned}$$

are required in this step. By the following crucial estimate

$$\begin{aligned} |(\nabla \varphi )_e(y,s)|\le \frac{C}{\sqrt{s}} \end{aligned}$$

(which holds in fact in \({\mathbb {R}}^N\) but this will not be used), (A.3) follows immediately. \(\square \)

Lemma A.2

(Elementary estimates on B(q)) For all \(K_0\ge 1\), all \(A\ge 1\), there exists \(s_7=s_7(K_0,A)\) such that for all \(s\ge s_7\), the condition \(q(s)\in V_{K_0,A}(s)\) implies

$$\begin{aligned} |\chi (y,s)B(q)(y,s)|\le C(K_0)|q|^2 \end{aligned}$$

and

$$\begin{aligned} |B(q)|\le C|q|^{{{\bar{p}}}}, \end{aligned}$$

where \({{\bar{p}}}=\min \{p,2\}\). In particular, for some \(C=C(K_0)>1\),

$$\begin{aligned} |B(q)(y,s)|\le \frac{C(1+|y|^3)}{s^{\frac{5}{2}}}\quad \text {and}\quad |B(q)(y,s)|\le \frac{C}{s}. \end{aligned}$$
(A.8)

Proof

The first part is [48, Lemma 3.15]. The second part can be found in [13, (5.18)], where \(s\ge s_7(K_0,A)\) is used to have A-independent C in (A.8). \(\square \)

Lemma A.3

(Elementary estimates on T(q)) For all \(K_0\ge 1\), \(A\ge 1\) and \(\varepsilon _0>0\), there exists \(t_8=t_8(K_0,A,\varepsilon _0)<T\) and \(\eta _8=\eta _8(\varepsilon _0)>0\) such that for all \(t_0\in [t_8,T)\), \(\alpha _0>0\), \(C_0>0\), \(\delta _0\le \frac{\widehat{k}(1)}{2}\) and \(\eta _0\le \eta _8\), we have the following property:

If h is the solution to (1.1), generated by the initial data \(h(t_0\text {;}d_0,d_1)\) defined in (5.1), that further satisfies

$$\begin{aligned} \forall \,\, t\in [t_0,T],\quad h(t)\in S^*(t_0, K_0, \varepsilon _0, A,\alpha _0,\delta _0, C_0,\eta _0,t), \end{aligned}$$

then for some \(C=C(K_0,C_0)>1\)

$$\begin{aligned}{} & {} |\chi (y,s)T(q)(s)|\le C\chi (y,s)\left( \frac{|q|}{s}+\frac{|\nabla q|}{\sqrt{s}}+|\nabla q|^2\right) , \end{aligned}$$
(A.9)
$$\begin{aligned}{} & {} |(1-\chi (y,s))T(q)(s)|\le \frac{C}{s}, \end{aligned}$$
(A.10)

where \(s=-\log (T-t)\) and q is defined in (3.8).

In using (A.10), we note the following simple estimate: for \(|y|\ge K_0\sqrt{s}\),

$$\begin{aligned} \frac{1}{s}\le C(K_0)\frac{|y|^3}{s^{\frac{5}{2}}}\le C(K_0)\frac{1+|y|^3}{s^{\frac{5}{2}}}. \end{aligned}$$
(A.11)

Proof

We follow the proof of Lemma B.4 in [47]. Consider

$$\begin{aligned} F(\theta )=-\frac{|\nabla (\varphi + \theta q)|^2}{\varphi + \theta q}+\frac{|\nabla \varphi |^2}{\varphi },\quad \theta \in [0,1]. \end{aligned}$$

Let us compute

$$\begin{aligned} F'(\theta )=q\frac{|\nabla (\varphi + \theta q)|^2}{(\varphi + \theta q)^2}-2\frac{(\nabla q)\cdot \nabla (\varphi + \theta q)}{\varphi + \theta q}. \end{aligned}$$

The smallness of q (which is guaranteed by Lemma A.1) and positivity of \(\varphi \) imply the boundedness of \((\varphi + \theta q)^{-1}\). From \(F(0)=0\) and

$$\begin{aligned} F(1)=\int _0^1F'(\theta )d\theta , \end{aligned}$$

we have the following rough estimate (where we also use \(|q|\le 1\))

$$\begin{aligned} \begin{aligned} |\chi (y,s)T(q)|&\le C\sup _{\theta \in [0,1]}|\chi (y,s)F'(\theta )|\\&\le C\chi (y,s)\left( |q||\nabla \varphi |^2+|\nabla \varphi ||\nabla q|+|\nabla q|^2\right) \\&\le C\chi (y,s)\left( \frac{|q|}{s}+\frac{|\nabla q|}{\sqrt{s}}+|\nabla q|^2\right) . \end{aligned} \end{aligned}$$

Moreover, C in (A.9) depends only on \(K_0\).

For (A.10), one uses the crucial estimate

$$\begin{aligned} \left| (1-\chi (y,s))\frac{|\nabla \varphi |^2}{\varphi }(y,s)\right| \le \frac{C}{s}, \end{aligned}$$

and the shrinking set conditions in \({{\mathcal {R}}}_2\) and \({{\mathcal {R}}}_3\). This is analogous to the proof of (A.3), and the reader is referred to the proof of [47, Lemma B.1] for details. Again, the constraints \(\delta _0\le \frac{\widehat{k}(1)}{2}\) and \(\eta _0\le \eta _8(\varepsilon _0)\) are required in this step. \(\square \)

Appendix B: Estimates which are independent of the shrinking set

We need estimates on V, R and L which are independent of the shrinking set.

Lemma B.1

For \(s\ge s_{9}\), the potential V defined via (3.10) satisfies

$$\begin{aligned}{} & {} -p\kappa ^{p-1}\le V(y,s)\le \frac{C}{s}, \end{aligned}$$
(B.1)
$$\begin{aligned}{} & {} |V(y,s)|\le \frac{C(1+|y|^2)}{s}, \end{aligned}$$
(B.2)
$$\begin{aligned}{} & {} \left| V(y,s)+\frac{1}{4s}(|y|^2-2N)\right| \le \frac{C(1+|y|^4)}{s^2}, \end{aligned}$$
(B.3)
$$\begin{aligned}{} & {} |\nabla ^i V(y,s)|\le \frac{C}{s^\frac{i}{2}},\quad i=1,2. \end{aligned}$$
(B.4)

Proof

See [52, Lemma B.1]. \(\square \)

Lemma B.2

For any \(s\ge 1\), the remainder R defined via (3.10) satisfies

$$\begin{aligned}{} & {} \Vert R(\cdot ,s)\Vert _{L^\infty }\le \frac{C}{s}, \end{aligned}$$
(B.5)
$$\begin{aligned}{} & {} \left| R(y,s)-\frac{\alpha _0}{s^2}\right| \le \frac{C(1+|y|^4)}{s^3}, \end{aligned}$$
(B.6)

for some \(\alpha _0=\alpha _0(a,p)\in {{\mathbb {R}}}\). In particular,

$$\begin{aligned}{} & {} |R_0(s)|\le \frac{C}{s^2},\quad |R_1(s)|\le \frac{C}{s^{3}},\quad |R_2(s)|\le \frac{C}{s^{3}}, \\{} & {} \left| R_b(y,s)-\frac{\alpha _0}{s^2}\right| \le \frac{C(K_0)(1+|y|^3)}{s^{\frac{5}{2}}}\quad \left( {\text {{\,hence,\,\,}}} \left\| \frac{R_-(\cdot , s)}{1+|\cdot |^3}\right\| _{L^\infty }\le \frac{C(K_0)}{s^{\frac{5}{2}}}\right) , \\{} & {} \Vert R_e(\cdot ,s)\Vert _{L^\infty }\le \frac{C}{s} \quad \left( {\text {{ hence, }}} |R_e(y,s)|\le \frac{C(1+|y|^3)}{s^{\frac{5}{2}}}\right) . \end{aligned}$$

Proof

The first part can be found in Lemma B.5 of [47] (naturally extended to \(N\ge 2\)). The second part follows from (B.5) and (B.6), the decomposition (3.23) and the definitions involved in this decomposition (using in particular orthogonality). \(\square \)

Lemma B.3

For \(\widetilde{f}\) given in (1.6), we have

$$\begin{aligned} \sup _{0\le u<\infty }|\widetilde{f}(u)|+|\widetilde{f}'(u)|\le C. \end{aligned}$$

In particular,

$$\begin{aligned} |L(q)(s)|\le \frac{C}{e^{\frac{ps}{p-1}}}. \end{aligned}$$
(B.7)

Proof

Note that as \(u\rightarrow \infty \), by (1.2) we have

$$\begin{aligned} \widetilde{f}(u)=\alpha ^{\frac{\beta }{\beta +1}}u^{1+\frac{1}{\alpha }}F(\alpha ^{\frac{1}{\beta +1}}u^{-\frac{1}{\alpha }})-u^p\rightarrow 0. \end{aligned}$$

The remaining arguments (using (1.3)) can be found in Lemma B.6 of [47]. \(\square \)

Appendix C: Local well-posedness in \({{\textbf{H}}}\) of the quenching problem

We show in this Appendix the local well-posedness in \({{\textbf{H}}}\) of (1.1).

  1. (1)

    Suppose that \(\Omega \) is a bounded domain in \({\mathbb {R}}^N\) and \(e^{t\Delta }\) is the heat semigroup associated to the Dirichlet Laplacian \(\Delta =\Delta _\Omega \) with boundary data \(\equiv 1\). Given \(0<h_0\in {{\textbf{H}}}\) with \(h_0\equiv 1\) on \(\partial \Omega \), we set

    $$\begin{aligned} \varepsilon _0=\inf h_0\quad \text {and}\quad M_0=\Vert h_0\Vert _{W^{1,\infty }(\Omega )}. \end{aligned}$$

    Consider

    $$\begin{aligned} K_0=K_0(\Omega ):=\left\{ {{\textbf{h}}}\in L^\infty (\Omega ): \inf {{\textbf{h}}}\ge \frac{\varepsilon _0}{2}, \Vert {{\textbf{h}}}\Vert _{W^{1,\infty }(\Omega )}\le 2CM_0\right\} , \end{aligned}$$

    where \(C\ge 1\) is the operator norm of the (Dirichlet) heat semigroup \(e^{t\Delta }\) on \(W^{1,\infty }(\Omega )\).

First, we claim that there exists \(T_0=T_0(\varepsilon _0,M_0)>0\) such that

$$\begin{aligned} \phi : h\mapsto e^{t\Delta }h_0-\int _0^t e^{(t-s)\Delta }F(h(s))ds \end{aligned}$$

is bounded and Lipschitz on \(L^\infty (0,T_0\text {;}K_0)\), with a Lipschitz constant strictly less than 1. To see this, take an arbitrary \(T>0\) and an arbitrary \(h\in L^\infty (0,T\text {;}K_0)\). Since

$$\begin{aligned}{} & {} \frac{\varepsilon _0}{2}\le h(s)\quad \text {and}\quad \Vert h(s)\Vert _{W^{1,\infty }(\Omega )}\le 2CM_0\\{} & {} \qquad \qquad \Longrightarrow \sup _{s\in (0,T)}\Vert F(h(s))\Vert _{W^{1,\infty }}\le M \end{aligned}$$

for some \(M=M(\varepsilon _0,M_0,\beta ,C)\) where \(\beta \) is given in (1.2), we get

$$\begin{aligned} \left\| \int _0^t e^{(t-s)\Delta }F(h(s))ds\right\| _{W^{1,\infty }}\le C TM. \end{aligned}$$

Meanwhile, we have

$$\begin{aligned} \varepsilon _0\le e^{t\Delta }h_0\quad \text {and}\quad \Vert e^{t\Delta }h_0\Vert _{W^{1,\infty }}\le C\Vert h_0\Vert _{W^{1,\infty }}=C M_0. \end{aligned}$$

Thus

$$\begin{aligned} T\le \frac{1}{CM}\min \left\{ \frac{\varepsilon _0}{2}, M_0\right\} \Longrightarrow \phi (h)(t)\in K_0. \end{aligned}$$

Now take \(h_1,h_2\in K_0\). Since

$$\begin{aligned} \Vert F(h_1(s))-F(h_2(s))\Vert _{W^{1,\infty }}\le \gamma \Vert h_1(s)-h_2(s)\Vert _{W^{1,\infty }} \end{aligned}$$

for some \(\gamma =\gamma (\varepsilon _0,M_0,\beta ,C)\), we have

$$\begin{aligned} \Vert \phi (h_1)(t)-\phi (h_2)(t)\Vert _{W^{1,\infty }}\le T\gamma \sup _{s\in (0,t)}\Vert h_1(s)-h_2(s)\Vert _{W^{1,\infty }}. \end{aligned}$$

Choose \(T_0\) so that \(CT_0M\le \min (\frac{\varepsilon _0}{2}, M_0)\) and \(T_0\gamma \le \frac{1}{2}\) proves the Lipschitz property.

By the claim just proved, for any \(h_0\in {{\textbf{H}}}\) there exists a unique solution h with trajectory in \(K_0\), with maximal existence time denoted by T. Moreover, either \(T=\infty \) (the solution is global), or \(T<\infty \), the solution escapes from \(L^\infty (0,T\text {;}K_0)\) in the sense

$$\begin{aligned} \text {either}\quad \lim _{t\rightarrow T}\Vert h(t)\Vert _{W^{1,\infty }}=\infty ,\quad \text {or}\quad \lim _{t\rightarrow T}\Vert 1/h(t)\Vert _{L^\infty }=\infty . \end{aligned}$$

By the arguments above, only the second scenario is allowed, i.e., \(\lim _{t\rightarrow T}\inf h(t)=0\).

  1. (2)

    Suppose that \(\Omega ={\mathbb {R}}^N\) and \(x_0\in \Omega \). Consider

    $$\begin{aligned} \widetilde{h}=h-\psi \quad \text {and} \quad \widetilde{h}_0=h_0-\psi , \end{aligned}$$

    where \(\psi =\psi _{x_0}\) is given in Definition 1.6 for \({{\textbf{H}}}={{\textbf{H}}}_{\psi _{x_0}}\). Note that

    $$\begin{aligned}{} & {} h_0\in {{\textbf{H}}}\Longrightarrow \widetilde{h}_0\in W^{1,\infty }({\mathbb {R}}^N), \\{} & {} h(s)\in {{\textbf{H}}}\Longrightarrow \frac{1}{\widetilde{h}(s)+\psi }\in L^\infty ({\mathbb {R}}^N). \end{aligned}$$

    Moreover, (1.1) is equivalent to

    $$\begin{aligned} \frac{\partial \widetilde{h}}{\partial t}=\Delta \widetilde{h}-F(\widetilde{h}+\psi )+\Delta \psi =:\Delta \widetilde{h}-\widetilde{F}(\widetilde{h}). \end{aligned}$$

    Here \(\Delta \psi \in L^\infty ({\mathbb {R}}^N)\). We then apply similar arguments as above to the new smooth nonlinear function \(\widetilde{F}\) to solve \(\widetilde{h}\) locally in \(K_0({\mathbb {R}}^N)\). We conclude that the solution \(h=\widetilde{h}+\psi \) solved this way is either global, or for some \(T<\infty \), \(\lim _{t\rightarrow T}\inf h(t)=0\).

Combing the two cases, we proved the local well-posedness of (1.1) in \({{\textbf{H}}}\).

Remark C.1

In the first case of bounded domains, the local well-posedness arguments extend to other types of boundary conditions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y.C., Zaag, H. Gradient profile for the reconnection of vortex lines with the boundary in type-II superconductors. J. Evol. Equ. 24, 2 (2024). https://doi.org/10.1007/s00028-023-00932-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00932-9

Keywords

Mathematics Subject Classification

Navigation