Skip to main content
Log in

Synthesis, Ion-Exchange and Photocatalytic Properties of Layered Perovskite-Like Niobate CsBa2Nb3O10: Comparative Analysis with Related Dion–Jacobson Phases A\({\text{A}}_{2}^{'}\)Nb3O10 (A = K, Rb, Cs; A' = Ca, Sr, Pb)

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Layered perovskite-like niobate CsBa2Nb3O10 has been synthesized in a pure single-phase state for the first time using both nitrates and carbonates of cesium and barium. Unlike its Ca-, Sr- and Pb-containing analogs, the niobate obtained was shown not to undergo substitution of interlayer alkali cations with protons (protonation) upon acid treatments under various conditions. A potential reason for its chemical inactivity may consist in partial disordering of cesium and barium cations between the interlayer space and perovskite slab, hindering the interlayer ion exchange. Optical bandgap energy of CsBa2Nb3O10, being equal to 2.8 eV, potentially allows using visible light (λ < 443 nm) for driving photocatalytic reactions. However, the photocatalytic potential of this niobate towards hydrogen production remains untapped since the activity of the interlayer space in protonation and hydration reactions, as shown earlier, is a fundamentally important factor determining the photocatalytic performance of ion-exchangeable layered perovskite-like oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Dion, M. Ganne, and M. Tournoux, Mater. Res. Bull. 16, 1429 (1981). https://doi.org/10.1016/0025-5408(81)90063-5

    Article  CAS  Google Scholar 

  2. K. Domen, Y. Ebina, T. Sekine, et al., Catal. Today 16, 479 (1993). https://doi.org/10.1016/0920-5861(93)80088-I

    Article  CAS  Google Scholar 

  3. A. J. Jacobson, J. T. Lewandowski, and J. W. Johnson, J. Less-Common Met. 116, 137 (1986). https://doi.org/10.1016/0022-5088(86)90224-9

    Article  CAS  Google Scholar 

  4. T. Kawaguchi, K. Horigane, Y. Itoh, et al., Phys Condens. Matter 536, 830 (2018). https://doi.org/10.1016/j.physb.2017.09.060

    Article  ADS  CAS  Google Scholar 

  5. L. Fang, H. Zhang, and R. Yuan 17, 3 (2002).

  6. C. H. Mahler, B. L. Cushing, J. N. Lalena, et al., Mater. Res. Bull. 33, 1581 (1998). https://doi.org/10.1016/S0025-5408(98)00166-4

    Article  CAS  Google Scholar 

  7. M. Fang, C. H. Kim, and T. E. Mallouk, Chem. Mater. 11, 1519 (1999). https://doi.org/10.1021/cm981065s

    Article  CAS  Google Scholar 

  8. J. Yoshimura, Y. Ebina, J. Kondo, et al., J. Phys. Chem. 97, 1970 (1993). https://doi.org/10.1021/j100111a039

    Article  CAS  Google Scholar 

  9. Y. Liou and C. M. Wang, J. Electrochem. Soc. 143, 1492 (1996). https://doi.org/10.1149/1.1836668

    Article  ADS  CAS  Google Scholar 

  10. C. Ziegler, T. Dennenwaldt, D. Weber, et al., Z. Anorg. Allg. Chem. 643, 1668 (2017). https://doi.org/10.1002/zaac.201700269

    Article  CAS  Google Scholar 

  11. H. Fukuoka, T. Isami, and S. Yamanaka, J. Solid State Chem. 151, 40 (2000). https://doi.org/10.1006/jssc.2000.8619

    Article  ADS  CAS  Google Scholar 

  12. R. E. Schaak and T. E. Mallouk, Chem. Mater. 14, 1455 (2002). https://doi.org/10.1021/cm010689m

    Article  CAS  Google Scholar 

  13. S. Tahara and Y. Sugahara, Langmuir 19, 9473 (2003). https://doi.org/10.1021/la0343876

    Article  CAS  Google Scholar 

  14. S. Tahara, Y. Takeda, and Y. Sugahara, Chem. Mater. 17, 6198 (2005). https://doi.org/10.1021/cm0514793

    Article  CAS  Google Scholar 

  15. A. Shimada, Y. Yoneyama, S. Tahara, et al., Chem. Mater. 21, 4155 (2009). https://doi.org/10.1021/cm900228c

    Article  CAS  Google Scholar 

  16. A. D. Khramova, O. I. Silyukov, S. A. Kurnosenko, et al., Molecules 28, 4807 (2023). https://doi.org/10.3390/molecules28124807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. V. V. Voytovich, S. A. Kurnosenko, O. I. Silyukov, et al., Front. Chem. 8 (2020). https://doi.org/10.3389/fchem.2020.00300

  18. V. V. Voytovich, S. A. Kurnosenko, O. I. Silyukov, et al., Catalysts 11, 897 (2021). https://doi.org/10.3390/catal11080897

    Article  CAS  Google Scholar 

  19. Y. Ebina, T. Sasaki, and M. Watanabe, Solid State Ionics 151, 177 (2002). https://doi.org/10.1016/S0167-2738(02)00707-5

    Article  CAS  Google Scholar 

  20. T. Sasaki, J. Ceram. Soc. Jpn. 115, 9 (2007). https://doi.org/10.2109/jcersj.115.9

    Article  ADS  CAS  Google Scholar 

  21. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, et al., Science 340, 6139 (2013). https://doi.org/10.1126/science.1226419

    Article  CAS  Google Scholar 

  22. T. H. Wang, C. N. Henderson, T. I. Draskovic, et al., Chem. Mater. 26, 898 (2014). https://doi.org/10.1021/cm401803d

    Article  CAS  Google Scholar 

  23. H. Gao, S. Shori, X. Chen, et al., J. Colloid Interface Sci. 392, 226 (2013). https://doi.org/10.1016/j.jcis.2012.09.079

    Article  ADS  PubMed  CAS  Google Scholar 

  24. M. Sakaki, Y. Q. Feng, and K. Kajiyoshi, J. Solid State Chem. 277, 253 (2019). https://doi.org/10.1016/j.jssc.2019.06.018

    Article  ADS  CAS  Google Scholar 

  25. Y.-S. Han, I. Park, and J.-H. Choy, J. Mater. Chem. 11, 1277 (2001). https://doi.org/10.1039/b006045n

    Article  CAS  Google Scholar 

  26. W.-J. Lee, H. J. Yeo, D.-Y. Kim, et al., Bull. Korean Chem. Soc. 34, 2041 (2013). https://doi.org/10.5012/bkcs.2013.34.7.2041

    Article  CAS  Google Scholar 

  27. F. Hashemzadeh, Water Sci. Technol. 73, 1378 (2016). https://doi.org/10.2166/wst.2015.610

    Article  PubMed  Google Scholar 

  28. S.-H. Kweon, M. Im, W.-H. Lee, et al., J. Mater. Chem. C 4, 178 (2016). https://doi.org/10.1039/C5TC03815D

    Article  CAS  Google Scholar 

  29. V. Thangadurai, P. Schmid-Beurmann, and W. Weppner, J. Solid State Chem. 158, 279 (2001). https://doi.org/10.1006/jssc.2001.9108

    Article  ADS  CAS  Google Scholar 

  30. E. Zahedi, M. Hojamberdiev, and M. F. Bekheet, RSC Adv. 5, 88725 (2015). https://doi.org/10.1039/c5ra13763b

  31. J. R. Reddy, S. Kurra, R. Guje, et al., Ceram. Int. 41, 2869 (2015). https://doi.org/10.1016/j.ceramint.2014.10.109

    Article  CAS  Google Scholar 

  32. C. N. Henderson, Studies on the Exfoliation, Reassembly and Applications of Layered Materials, The Pennsylvania State University, 2013.

    Google Scholar 

  33. I. A. Rodionov, E. A. Maksimova, A. Y. Pozhidaev, et al., Front. Chem. 7, 1 (2019). https://doi.org/10.3389/fchem.2019.00863

    Article  CAS  Google Scholar 

  34. I. A. Rodionov, E. O. Gruzdeva, A. S. Mazur, et al., Catalysts 12, 1556 (2022). https://doi.org/10.3390/catal12121556

    Article  CAS  Google Scholar 

  35. S. A. Kurnosenko, V. V. Voytovich, O. I. Silyukov, et al., Catalysts 13, 749 (2023). https://doi.org/10.3390/catal13040749

    Article  CAS  Google Scholar 

  36. S. A. Kurnosenko, V. V. Voytovich, O. I. Silyukov, et al., Catalysts 11, 1279 (2021). https://doi.org/10.3390/catal13040749

    Article  CAS  Google Scholar 

  37. S. A. Kurnosenko, V. V. Voytovich, O. I. Silyukov, et al., Catalysts 13, 614 (2023). https://doi.org/10.3390/catal13030614

    Article  CAS  Google Scholar 

  38. I. A. Zvereva, O. I. Silyukov, and M. V. Chislov, Russ. J. Gen. Chem. 81, 1434 (2011). https://doi.org/10.1134/S1070363211070061

    Article  CAS  Google Scholar 

  39. S. A. Kurnosenko, A. A. Burov, O. I. Silyukov, et al., Glas. Phys. Chem. 49, 160 (2023). https://doi.org/10.1134/S1087659622600971

    Article  CAS  Google Scholar 

  40. L. V. Yafarova, O. I. Silyukov, T. D. Myshkovskaya, et al., J. Therm. Anal. Calorim. 143, 87 (2021). https://doi.org/10.1007/s10973-020-09276-9

    Article  CAS  Google Scholar 

  41. J. -M. Jehng and I. E. Wachs, Chem. Mater. 3, 100 (1991). https://doi.org/10.1021/cm00013a025

    Article  CAS  Google Scholar 

  42. Y. Hong and S.-J. Kim, Bull. Korean Chem. Soc. 17, 730 (1996).

    CAS  Google Scholar 

  43. I. Zvereva, Y. Smimov, V. Gusarov, et al., Solid State Sci. 5, 343 (2003). https://doi.org/10.1016/S1293-2558(02)00021-3

    Article  ADS  CAS  Google Scholar 

  44. E. A. Tugova, Russ. J. Inorg. Chem. 67, 874 (2022). https://doi.org/10.1134/S0036023622060237

    Article  CAS  Google Scholar 

  45. D. S. Shtarev, A. V. Shtareva, and A. Y. Petrova, Russ. J. Inorg. Chem. 67, 1368 (2022). https://doi.org/10.1134/S0036023622090145

    Article  CAS  Google Scholar 

  46. H. Shibata, Y. Ogura, Y. Sawa, et al., Boisci. Biotechnol. Biochem. 62, 2306 (1998). https://doi.org/10.1271/bbb.62.2306

    Article  CAS  Google Scholar 

  47. Y. Nosaka and A. Nosaka, ACS Energy Lett. 1, 356 (2016). https://doi.org/10.1021/acsenergylett.6b00174

    Article  CAS  Google Scholar 

  48. W. Cui, L. Liu, S. Ma, et al., Catal. Today 207, 44 (2013). https://doi.org/10.1016/j.cattod.2012.05.009

    Article  CAS  Google Scholar 

  49. N. Xiao, S. Li, X. Li, et al., Chinese J. Catal. 41, 642 (2020). https://doi.org/10.1016/S1872-2067(19)63469-8

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was conducted using the equipment of the St. Petersburg State University Research Park, namely Center for X-ray Diffraction Studies, Interdisciplinary Center for Nanotechnology, Center for Optical and Laser Research, Center for Chemical Analysis and Materials Research, and Center for Thermal Analysis and Calorimetry. This article is dedicated to the 300th anniversary of St. Petersburg State University.

Funding

The research was supported by the Russian Science Foundation (grant no. 19-13-00184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zvereva.

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurnosenko, S.A., Silyukov, O.I., Rodionov, I.A. et al. Synthesis, Ion-Exchange and Photocatalytic Properties of Layered Perovskite-Like Niobate CsBa2Nb3O10: Comparative Analysis with Related Dion–Jacobson Phases A\({\text{A}}_{2}^{'}\)Nb3O10 (A = K, Rb, Cs; A' = Ca, Sr, Pb). Russ. J. Inorg. Chem. 68, 1903–1912 (2023). https://doi.org/10.1134/S0036023623602842

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602842

Keywords:

Navigation