Skip to main content
Log in

Reactions of Palladium(II) Chloride with Monoiminoacenaphthenones

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reaction of PdCl2 with [2,6-diisopropylphenyl]iminoacenaphthenone (Dpp-mian) in dichloromethane affords compound [Pd(Dpp-mian)Cl2]2[Pd(Dpp-mian)2Cl2] (I). Complex I contains two structural units: [Pd(Dpp-mian)Cl2] in which Dpp-mian coordinates to Pd(II) via the bidentate-chelate mode by the nitrogen and oxygen atoms and [Pd(Dpp-mian)2Cl2] where two Dpp-mian molecules are linked with palladium only via the nitrogen atom. The reaction of PdCl2 with [4-methoxyphenyl]iminoacenaphthenone (4-MeOPh-mian) in dichloromethane is accompanied by the rearrangement of the ligand structure followed by the formation of the earlier described Pd(II) complex with 1,2-bis[4-methoxyphenyl]iminoacenaphthene (4-MeOPh-bian): [Pd(4-MeOPh-bian)Cl2] (II) (CIF file CCDC no. 2280529). Compound I is synthesized for the first time and characterized by X-ray diffraction (XRD) (CIF file CCDC no. 2280528 (I)), phase XRD, elemental analysis, IR spectroscopy, and cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Khrizanforova, V.V., Fayzullin, R.R., Gerasimova, T.P., et al., Int. J. Mol. Sci., 2023, vol. 24, no. 10, p. 8667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Razborov, D.A., Lukoyanov, A.N., Baranov, E.V., et al., Dalton Trans., 2015, vol. 44, no. 47, p. 20532.

    Article  PubMed  CAS  Google Scholar 

  3. Lukoyanov, A.N., Zvereva, Y.V., Parshina, D.A., et al., Eur. J. Inorg. Chem., 2022, vol. 2022, no. 27, e202200348.

    Article  CAS  Google Scholar 

  4. Lukoyanov, A.N., Ulivanova, E.A., Razborov, D.A., et al., Chem.-Eur. J., 2019, vol. 25, no. 15, p. 3858.

    Article  PubMed  CAS  Google Scholar 

  5. Koptseva, T.S., Moskalev, M.V., Skatova, A.A., et al., Inorg. Chem., 2022, vol. 61, no. 1, p. 206.

    Article  PubMed  CAS  Google Scholar 

  6. Bernauer, J., Pölker, J., and von Wangelin, J., ChemCatChem, 2022, vol. 14, no. 1, p. e202101182.

    Article  PubMed  CAS  Google Scholar 

  7. Yambulatov, D.S., Nikolaevskii, S.A., Kiskin, M.A., et al., Molecules, 2020, vol. 25, no. 9, p. 2054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Romashev, N.F., Bakaev, I.V., Komlyagina, V.I., et al., J. Struct. Chem., 2022, vol. 63, no. 8, p. 1304.

    Article  CAS  Google Scholar 

  9. Romashev, N.F., Mirzaeva, I.V., Bakaev, I.V., et al., J. Struct. Chem., 2022, vol. 63, no. 2, p. 242.

    Article  CAS  Google Scholar 

  10. Romashev, N.F., Bakaev, I.V., Komlyagina, V.I., et al., Int. J. Mol. Sci., 2023, vol. 24, no. 13, p. 10457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Komlyagina, V.I., Romashev, N.F., Besprozvannykh, V.K., et al., Inorg. Chem., 2023, vol. 62, no. 29, p. 11541.

    Article  PubMed  CAS  Google Scholar 

  12. Razborov, D.A., Lukoyanov, A.N., Makarov, V.M., et al., Russ. Chem. Bull., 2015, vol. 64, no. 10, p. 2377.

    Article  CAS  Google Scholar 

  13. Anga, S., Paul, M., Naktode, K., et al., Z. Anorg. Allg. Chem., 2012, vol. 638, no. 9, p. 13115.

    Article  Google Scholar 

  14. Lukoyanov, A.N., Fomenko, I.S., Gongola, M.I., et al., Molecules, 2021, vol. 26, no. 18, p. 5706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Anga, S., Pal, T., Kottalanka, R.K., et al., Can. Chem. Trans., 2013, vol. 1, no. 2, p. 105.

    Article  Google Scholar 

  16. Anga, S., Rej, S., Naktode, K., et al., J. Chem. Sci., 2015, vol. 127, no. 1, p. 103.

    Article  CAS  Google Scholar 

  17. Gao, B., Gao, W., Wu, Q., et al., Organometallics, 2011, vol. 30, no. 20, p. 5480.

    Article  CAS  Google Scholar 

  18. Carrington, S.J., Chakraborty, I., and Mascharak, P.K., Dalton Trans., 2015, vol. 44, no. 31, p. 13828.

    Article  PubMed  CAS  Google Scholar 

  19. Hazari, A.S., Das, A., Ray R., et al., Inorg. Chem., 2015, vol. 54, no. 10, p. 4998.

    Article  PubMed  CAS  Google Scholar 

  20. Visentin, L.C., Ferreira, L.C., Bordinhão, J., et al., J. Braz. Chem. Soc., 2010, vol. 21, no. 7, p. 1187.

    Article  CAS  Google Scholar 

  21. Bhattacharjee, J., Sachdeva, M., Banerjee, I., et al., J. Chem. Sci., 2016, vol. 128, no. 6, p. 875.

    Article  CAS  Google Scholar 

  22. Singha Hazari, A., Ray, R., Hoque, M.A., et al., Inorg. Chem., 2016, vol. 55, no. 16, p. 8160.

    Article  PubMed  CAS  Google Scholar 

  23. Tang, X., Huang, Y.T., Liu, H., et al., J. Organomet. Chem., 2013, vol. 729, p. 95.

    Article  CAS  Google Scholar 

  24. Fomenko, I.S., Nadolinny, V.A., Efimov, N.N., et al., Russ. J. Coord. Chem., 2019, vol. 45, p. 776. https://doi.org/10.1134/S1070328419110022

    Article  CAS  Google Scholar 

  25. Komlyagina, V.I., Romashev, N.F., Kokovkin, V.V., et al., Molecules, 2022, vol. 27, no. 20, p. 6961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kuznetsova, A.A., Volchek, V.V., Yanshole, V.V., et al., Inorg. Chem., 2022, vol. 61, no. 37, p. 14560.

    Article  PubMed  CAS  Google Scholar 

  27. APEX3. SAINT, Madison: Bruker AXS Inc., 2018.

  28. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, no. 1, p. 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Google Scholar 

  30. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, no. 1, p. 3.

    Article  Google Scholar 

  31. Coventry, D.N., Batsanov, A.S., Goeta, A.E., et al., Polyhedron, 2004, vol. 23, no. 17, p. 2789.

    Article  CAS  Google Scholar 

  32. Romashev, N.F., Gushchin, A.L., Fomenko, I.S., et al., Polyhedron, 2019, vol. 173, p. 114110.

    Article  CAS  Google Scholar 

  33. Romashev, N.F., Abramov, P.A., Bakaev, I.V., et al., Inorg. Chem., 2022, vol. 61, no. 4, p. 2105.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, J., Ganguly, R., Yongxin, L., et al., Dalton Trans., 2016, vol. 45, no. 19, p. 7941.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The XRD study of compounds I and II was carried out using the equipment of the Center for Collective Use “Analytical Center of Institute of Organometallic Chemistry of Russian Academy of Sciences.” The authors are grateful to the Ministry of Science and Higher Education of the Russian Federation and the Center for Collective Use at the Nikolaev Institute of Inorganic Chemistry (Siberian Branch, Russian Academy of Sciences).

Funding

This work was supported by the Russian Science Foundation, project no. 21-13-00092.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. F. Romashev or A. L. Gushchin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukoyanov, A.N., Romashev, N.F., Komlyagina, V.I. et al. Reactions of Palladium(II) Chloride with Monoiminoacenaphthenones. Russ J Coord Chem 49, 800–806 (2023). https://doi.org/10.1134/S1070328423601176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423601176

Keywords:

Navigation