Skip to main content
Log in

Matching pursuit with unbounded parameter domains

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In various applications, the adoption of optimal energy matching pursuit with dictionary elements is common. When the dictionary elements are indexed by parameters within a bounded region, exhaustion-type algorithms can be employed. This article aims to investigate a process that converts the optimal parameter selection in unbounded regions to a bounded and closed (compact) sub-domain. Such a process provides accessibility for energy matching pursuit in a wide range of applications. The paper initially focuses on the open unit disc and the upper-half complex plane, introducing adaptive Fourier decomposition as the underlying methodology. It then extends this concept to general Hilbert spaces with a dictionary and Bochner spaces for random signals. Computational examples are included to illustrate the concepts presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpay, D., Colombo, F., Qian, T., Sabadini, I.: Adaptive orthonormal systems for matrix-valued functions. Proc. Am. Math. Soc. 145(5), 2089–2106 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alpay, D., Colombo, F., Qian, T., Sabadini, I.: Adaptative decomposition: the case of the Drury-Arveson space. J. Fourier Anal. Appl. 23(6), 1426–1444 (2017)

    Article  MathSciNet  Google Scholar 

  3. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Struc. Optim. 17, 1–13 (1999)

    Article  Google Scholar 

  4. Coifman, R., Steinerberger, S.: Nonlinear phase unwinding of functions. J. Fourier Anal. Appl. 23(4), 778–809 (2017)

    Article  MathSciNet  Google Scholar 

  5. Coifman, R., Peyriére, J.: Phase unwinding, or invariant subspace decompositions of Hardy spaces. J. Fourier Anal. Appl. 25, 684–695 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chen, Q.H., Qian, T., Tan, L.H.: A theory on non-constant frequency decompositions and applications. Advancements in Complex Analysis, 1–37 (2020)

  7. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)

    Article  MathSciNet  Google Scholar 

  8. Devore, R.A., Temlyakov, V.N.: Some remarks on greedy algorithm. Adv. Comput. Math. 5, 173–187 (1996)

    Article  MathSciNet  Google Scholar 

  9. Huyer, W., Neumaier, A.: SNOBFIT-stable noisy optimization by branch and fit. ACM Trans. Math. Softw. (TOMS) 35(2), 1–25 (2008)

    Article  MathSciNet  Google Scholar 

  10. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)

    Article  MathSciNet  Google Scholar 

  11. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)

    Article  MathSciNet  Google Scholar 

  12. Livshitz, E.D., Temlyakov, V.N.: On convergence of weak greedy algorithms. South Carolina University Columbia Department of Mathematics (2000)

  13. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  ADS  Google Scholar 

  14. Powell, M.J.: Recent research at Cambridge on radial basis functions. New Developments in Approximation Theory, 215–232 (1999)

  15. Pardalos, P.M., Romeijn, H.E., Tuy, H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124(1–2), 209–228 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Qian, T.: Analytic signals and harmonic measures. J. Math. Anal. Appl. 314(2), 526–536 (2006)

    Article  MathSciNet  Google Scholar 

  17. Qian, T.: Mono-components for decomposition of signals. Math. Methods Appl. Sci. 29(10), 1187–1198 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Qian, T.: Intrinsic mono-component decomposition of functions: an advance of Fourier theory. Math. Methods Appl. Sci. 33(7), 880–891 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Qian, T.: Two-dimensional adaptive Fourier decomposition. Math. Methods Appl. Sci. 39(10), 2431–2448 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Qian, T.: Reproducing kernel sparse representations in relation to operator equations. Complex Anal. Oper. Theory 14(2), 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  21. Qian, T.: Sparse representations of random signals. Math. Methods Appl. Sci. 45(8), 4210–4230 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  22. Qian, T.: n-Best kernel approximation in reproducing kernel Hilbert spaces. Appl. Comput. Harmon. Anal. 67, 101568 (2023). https://doi.org/10.1016/j.acha.2023.06.003

    Article  MathSciNet  Google Scholar 

  23. Qian, T., Chen, Q.H., Li, L.Q.: Analytic unit quadrature signals with non-linear phase. Phys. D: Nonlinear Phenom. 303(1–2), 80–87 (2005)

    Article  ADS  Google Scholar 

  24. Qian, T., Dai, L., Zhang, L., Chen, Z.: Granular sieving algorithm for selecting best \(n\) parameters. Math. Methods Appl. Sci. 45(12), 7495–7509 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  25. Qian, T., Zhang, Y., Liu, W., Qu, W.: Adaptive Fourier decomposition-type sparse representations versus the Karhunen-Loeve expansion for decomposing stochastic processes. Math. Methods Appl. Sci. (2023). https://doi.org/10.1002/mma.9301

    Article  MathSciNet  Google Scholar 

  26. Qu, W., Chui, C.K., Deng, G.T., Qian, T.: Sparse representation of approximation to identity. Anal. Appl. 20(04), 815–837 (2022)

    Article  MathSciNet  Google Scholar 

  27. Qu, W., Qian, T., Li, H.C., Zhu, K.H.: Best kernel approximation in Bergman spaces. Appl. Math. Comput. 416, 126749 (2022)

    MathSciNet  Google Scholar 

  28. Qian, T., Wang, Y.B.: Adaptive Fourier series-a variation of greedy algorithm. Adv. Comput. Math. 34(3), 279–293 (2011)

    Article  MathSciNet  Google Scholar 

  29. Qian, T., Wang, J.X.: Some remarks on the boundary behavior of the Hardy spaces. Adv. Appl. Clifford Algebras 22(3), 819–826 (2012)

    Article  MathSciNet  Google Scholar 

  30. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56, 1247–1293 (2013)

    Article  MathSciNet  Google Scholar 

  31. Stein, E., Weiss, G.: Introduction to Fourier analysis in Euclidean spaces. Princeton University Press (1970)

  32. Temlyakov, V.: Greedy approximation. Cambridge University Press (2021)

  33. Wang, Z., Wan, F., Wong, C.M., Qian, T.: Fast basis search for adaptive Fourier decomposition. Eurasip J. Adv. Signal Process. 1–14 (2018)

Download references

Acknowledgements

We wish to sincerely thank the reviewer. The related study to answer his questions greatly improved our understanding to this subject.

Funding

This study was funded by the Zhejiang Provincial Natural Science Foundation of China (grant number LQ23A010014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Felix Krahmer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Proof of Lemma 3

Appendix. Proof of Lemma 3

The proof is based on standard techniques of harmonic analysis. Since \(f\in H^2(\textbf{C}^+),\) the corresponding Paley-Wiener Theorem asserts that \(\textrm{supp}\hat{f}\subset [0,\infty ).\) Due to absolute continuity of integration, there exist \(0<\delta _1< N_1 <\infty ,\) such that

$$\begin{aligned} \Vert \chi _{[\delta _1,N_1]}\hat{f}-\hat{f}\Vert <\varepsilon /2,\end{aligned}$$
(1)

where for any set \(A\subset \textbf{R},\) \(\chi _A\) denotes the indicator function of A. Let \(\phi \) be a \(C_0^\infty \) function on the line with support in \([-\delta _1/2,\delta _1/2]\) such that

$$\begin{aligned} \Vert \phi *(\chi _{[\delta _1,N_1]}\hat{f})-\chi _{[\delta _1,N_1]}\hat{f}\Vert <\varepsilon /16.\end{aligned}$$
(2)

Such function \(\phi \) may be constructed by using the approximation to identity process via dilation and translation of any function in \(C_0^\infty \) with integral 1 (See, for instance, [31]). For the algorithm reason, we enclose the details concerning the parameter estimations.

Let \(\psi \) be a non-negative \(L^1\)-function of integral 1 with compact support in \([-1/2,1/2].\) We show that there exists \({0<t_0\le \delta _1}\) such that for all t satisfying \(0<t\le t_0\), there holds

$$\begin{aligned} \Vert \psi _t*F-F\Vert <\varepsilon /16,\end{aligned}$$
(3)

where we have used \(F=(\chi _{[\delta _1,N_1]}\hat{f})\) for short, and \(\psi _t\) the norm-1 preserving dilation of \(\psi : \psi _t(x)=\frac{1}{t}\psi (\frac{x}{t}).\) Once such \(t_0\) is found, we take \(\phi =\psi _{t_0}\) in (31) and let \(g=(\phi *(\chi _{[\delta _1,N_1]}\hat{f}))^\vee .\) Owing to the Plancherel Theorem,

$$\begin{aligned} \Vert \psi _t*F-F\Vert ^2 =\Vert ((\psi _t\hat{)}-1)\hat{F}\Vert ^2 =\left( \int _{-N_2}^{N_2} +\int _{-\infty }^{-N_2}+\int _{N_2}^\infty \right) |G_t(\xi )|^2d\xi , \end{aligned}$$

where \(G_t=((\psi _t\hat{)}-1)\hat{F}.\) Since \((\psi _t\hat{)}\) is bounded by 1,  we can first determine \(N_2\) large enough such that

$$\begin{aligned} \int _{N_2}^\infty |G_t(\xi )|^2d\xi \le 4\int _{N_2}^\infty |\hat{F}(\xi )|^2d\xi < \frac{\varepsilon }{64}.\end{aligned}$$
(4)

The integral from \(-\infty \) to \(-N_2\) is similarly estimated, involving maybe an adjustment of \(N_2.\)

Note that \((\psi _t\hat{)}(\xi )=\hat{\psi }(t\xi ),\ \hat{\psi }(0)=1,\) and \(\hat{\psi } (\xi ) \) is continuous at \(\xi =0.\) When \(N_2\) is fixed, \(t_0\) can be chosen small enough to satisfy \(t_0\le \delta _1,\) and for \(0<t\le t_0,\)

$$\begin{aligned} |\hat{\psi }(t\xi )-1|< \frac{\varepsilon }{128\Vert F\Vert _2^2}\end{aligned}$$
(5)

uniformly for \(\xi \in [-N_2,N_2].\) Then we have

$$\begin{aligned} \int _{-N_2}^{N_2}|G_t(\xi )|^2d\xi< \frac{\varepsilon }{128\Vert F\Vert _2^2}\int _{-N_2}^{N_2}|\hat{F}(\xi )|^2d\xi < \frac{\varepsilon }{128}.\end{aligned}$$
(6)

In summary, (32) holds.

Taking \(\phi =\psi _{t_0}\) and \(g=(\phi *(\chi _{[\delta _1,N_1]}\hat{f}))^\vee .\) The Titchmarsh Convolution Theorem asserts that \(\phi *(\chi _{[\delta _1,N_1]}\hat{f}))\) has support contained in \([\delta _1/2,N_1+\delta _1/2].\) Using the Paley-Wiener theorem, again, we assert that \(g=(\phi *(\chi _{[\delta _1,N_1]}\hat{f}))^\vee \in H^2(\textbf{C}^+).\) Using the Riemann-Lebesgue lemma to the \(L^1(\textbf{R})\) function \(\phi *(\chi _{[\delta _1,N_1]}\hat{f})\), we have that \(\hat{g}\) is bounded and tending to zero at \(\infty .\) It also has smoothness to any degree. From the construction, it is easy to see that \(\Vert g-f\Vert _{H^2(\textbf{C}^+)}<\varepsilon .\) We next show that g has the properties claimed in (15). We take the case \(j=0\) in (15) as the rest cases are similar. Note that for \(z\in \textbf{C}^+, t\in \textbf{R}^+, |\textrm{e}^{\textrm{i}tz}|\le 1.\) For \(N=N_1+\delta _1/2,\) owing to the boundedness of \(\hat{g}\), there exists \(L_1>0,\)

$$\begin{aligned} |g(z)|= & {} \frac{1}{2\pi }\left| \int _0^N\textrm{e}^{\textrm{i}tz}\hat{g}(t)dt \right| < L_1. \end{aligned}$$
(7)

By using integration by parts, owing to the smoothness of \(\hat{g},\) there exists \(L_2>0,\)

$$\begin{aligned} |g(z)|= & {} \frac{1}{2\pi }\left| \int _0^N\textrm{e}^{\textrm{i}tz}\hat{g}(t)dt \right| \nonumber \\= & {} \frac{1}{2\pi }\left| \int _0^N\hat{g}(t)d\left( \frac{\textrm{e}^{\textrm{i}tz}}{\textrm{i}z}\right) \right| \nonumber \\< & {} \frac{L_2}{|z|}, \qquad z\in \textbf{C}^+. \end{aligned}$$
(8)

Therefore, for \(M_0=L_1+L_2,\)

$$\begin{aligned} |g(z)|< \frac{M_0}{1+|z|}, \qquad z\in \textbf{C}^+. \end{aligned}$$

The proof of the lemma is complete.

A more detailed analysis shows that the \(M_j\)’s are dependent of \(\epsilon \), and, when \(\epsilon \) becomes smaller, the \(M_j\)’s usually become larger.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, W., Wang, Y. & Sun, X. Matching pursuit with unbounded parameter domains. Adv Comput Math 50, 1 (2024). https://doi.org/10.1007/s10444-023-10097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10097-1

Keywords

Mathematics Subject Classification (2010)

Navigation