Skip to main content
Log in

Stable Differences in Growth Rates of Juvenile Triploid Oysters Crassostrea gigas Thunberg (Osteidae)

  • BIOLOGY, MORPHOLOGY, AND SYSTEMATICS OF HYDROBIONTS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Three groups of mollusks of the triploid Pacific oyster Crassostrea gigas differing in morphometric parameters—fast-growing (FG) with a shell height of over 40 mm; medium-growing (MG), 15 mm < H < 40 mm; and slow-growing (SG), H < 15 mm—have been studied from the Donuzlav estuary (Black Sea). Stable differences have been revealed in the growth rates of juveniles of the same age. Mollusks of the FG group are dominant in weight gain and linear dimensions throughout the study. The average daily increase in the shell height of the studied mollusks ranges from 0.1 to 0.35 mm/day, with maximum values in June and September. The weight increases with different rates: on average, 0.051 g/day in the SG groups, 0.168 g/day in the MG group, and 0.287 g/day in the FG group. The peaks of this parameter have been recorded in August and September, reaching 0.12, 0.26, and 0.43 g/day, respectively. The shell height of slow-growing polyploid oysters has a negative allometry (b = 2.17), while the other two groups are characterized by a clear positive allometry (b = 3.23 for MG and 3.80 for FG); i.e., the increase in weight is faster than the linear growth in juveniles of the species. It has been suggested that polyploidy (triploidy) determines the differences in the growth rates of the same-aged mollusks. The allometry index b can be used to identify growth features at the early stages of oyster development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Baillie, Ch.J. and Grabowski, J.H., Factors affecting recruitment, growth and survival of the eastern oyster Crassostrea virginica across an intertidal elevation gradient in southern New England, Mar. Ecol. Progr. Ser., 2019, vol. 609, p. 119. https://doi.org/10.3354/meps12830

    Article  Google Scholar 

  2. Barilléa, L., Lerouxela, A., Dutertrea, M., et al., Growth of the Pacific oyster (Crassostrea gigas) in a high-turbidity environment: Comparison of model simulations based on scope for growth and dynamic energy budgets, J. Sea Res., 2011, vol. 66, no. 4, p. 392. http://dx.doi.org/10.1016/j.seares.2011.07.004

  3. Batista, F., Leitão, A., Fonseca, V., et al., Individual relationship between aneuploidy of gill cells and growth rate in cupped oysters Crassostrea angulata, C. gigas and their reciprocal hybrids, J. Exp. Mar. Biol. Ecol., 2007, vol. 352, no. 1, p. 226. https://doi.org/10.1016/j.jembe.2007.07.009

  4. Bayne, B.L., Relations between variable rates of growth, metabolic costs and growth efficiencies in individual Sydney rock oysters (Saccostrea commercialis), J. Exp. Mar. Biol. Ecol., 2000, vol. 251, no. 2, p. 185. https://doi.org/10.1016/S0022-0981(00)00211-2

    Article  CAS  PubMed  Google Scholar 

  5. Bayne, B.L., Phenotypic flexibility and physiological tradeoffs in the feeding and growth of marine bivalve molluscs, Int. Comp. Biol., 2004, vol. 44, no. 6, p. 425. https://doi.org/10.1093/icb/44.6.425

    Article  Google Scholar 

  6. Bertolini, C., Brigolin, D., Porporato, E.M.D., et al., Testing a model of pacific oysters (Crassostrea gigas) growth in the Adriatic Sea: Implications for aquaculture spatial planning, Sustainability, 2021, vol. 13, p. 2. https://doi.org/10.3390/su13063309

    Article  CAS  Google Scholar 

  7. Bodenstein, S., Walton, W.C., and Steury, T.D., Effect of farming practices on growth and mortality rates in triploid and diploid eastern oysters Crassostrea virginica, Aquacult. Environ. Int., 2021, vol. 13, p. 33. https://doi.org/10.3354/aei00387

    Article  Google Scholar 

  8. Brundu, G., Pagani, S., and Graham, Ph., The shell growth of Crassostrea gigas and Ostrea edulis in windy condition: A preliminary evaluation, Aquacult. Res., 2021, vol. 52, p. 6802. https://doi.org/10.1111/are.15511

    Article  Google Scholar 

  9. Cogswell, A.T., Kenchington, E.L., Roach, S.E., et al., Triploid bay scallops (Argopecten irradians): Induction methodology, early gonadic development and growth, Can. Tech. Rep. Fish. Aquat. Sci., 2006, vol. 2635.

  10. Dame, R.F., Comparison of various allometric relationships in intertidal and subtidal American oysters, Fish. Bull., 1972, vol. 70, no. 4, p. 1121.

    Google Scholar 

  11. Francis Pan, T.C., Applebaum, S.L., and Manahan, D.T., Genetically determined variation in developmental physiology of bivalve larvae (Crassostrea gigas), Physiol. Biochem. Zool., 2015, vol. 88, no. 2, p. 128. https://doi.org/10.1086/679656

    Article  PubMed  Google Scholar 

  12. Grangeré, K., Ménesguen, A., Lefebvre, S., et al., Modelling the influence of environmental factors on the physiological status of the Pacific oyster Crassostrea gigas in an estuarine embayment; The Baie des Veys (France), J. Sea Res., 2009, vol. 62, p. 147.

    Article  Google Scholar 

  13. Guo, X.M. and Allen, S.K., Viable tetraploids in the Pacific oyster (Crassostrea gigas Thunberg) produced by inhibiting polar body I in eggs from triploids, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, no. 1, p. 42.

    Google Scholar 

  14. Hedgecock, D., Lin, J.Z., De Cola, S., et al., Transcriptomic analysis of growth heterosis in larval Pacific oysters (Crassostrea gigas), Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 7, p. 2313. https://doi.org/10.1073/pnas.0610880104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leitão, A., Boudry, P., and Thiriot-Quiévreux, C., Negative correlation between aneuploidy and growth in the Pacific oyster Crassostrea gigas: Ten years of evidence, Aquaculture, 2001, vol. 193, nos. 1–2, p. 39. https://doi.org/10.1016/S0044-8486(00)00488-9

    Article  Google Scholar 

  16. Liu, W., Heasman, M., and Simpson, R., Growth and reproductive performance of triploid and diploid blacklip abalone, Haliotis rubra (Leach, 1814), Aquacult. Res., 2008, vol. 40, no. 2, p. 188. https://doi.org/10.1111/j.1365-2109.2008.02082.x

    Article  Google Scholar 

  17. Major, J., Jakab, M., and Tompa, A., The frequency of induced premature centromere division in human populations occupationally exposed to genotoxic chemicals, Mutat. Res., 1998, vol. 445, no. 2, p. 241. https://doi.org/10.1016/S1383-5718(99)00129-1

    Article  Google Scholar 

  18. Mallet, A. and Doiron, S., Growth comparison for oysters grown on rope and floating bags, Report to Project AFA9004, New Brunswick Department of Agriculture and Aquaculture, January, 2009.

  19. Mallia, J.V., Muthiah, P., and Thomas, P.C., Growth of triploid oyster, Crassostrea madrasensis (Preston), Aquacult. Res., 2006, vol. 37, p. 718.

    Article  Google Scholar 

  20. Martin, R. and Rademaker, A., The frequency of aneuploidy among individual chromosomes in 6.821 human sperm chromosome complements, Cytogenet. Cell Genet., 1990, vol. 53, nos. 2–3, p. 103.

    Article  CAS  PubMed  Google Scholar 

  21. Meyer, E. and Manahan, D.T., Gene expression profiling of genetically determined growth variation in bivalve larvae (Crassostrea gigas), J. Exp. Biol., 2010, vol. 213, no. 5, p. 749. https://doi.org/10.1242/jeb.037242

    Article  CAS  PubMed  Google Scholar 

  22. Nair, N.U. and Nair, N.B., Relation between weight and linear measurements of shell in C. madrasensis (Preston), Fish.Technol., 1986, vol. 23, p. 120.

    Google Scholar 

  23. Nell, J.A., Farming triploid oysters, Aquaculture, 2002, vol. 210, p. 69.

    Article  Google Scholar 

  24. Osei, I.K., Kobina, Y., and Obodai, E.A., Comparative analysis of growth performance and survival of the West African mangrove oyster, Crassostrea tulipa (Lamarck, 1819) cultivated by suspension and bottom culture methods in the Densu Estuary, Ghana, Aquacult., Fish Fish., 2022, vol. 2, p. 233. https://doi.org/10.1002/aff2.43

    Article  Google Scholar 

  25. Pace, D.A., Marsh, A.G., Leong, P.K., et al., Physiological bases of genetically determined variation in growth of marine invertebrate larvae: A study of growth heterosis in the bivalve Crassostrea gigas, J. Exp. Mar. Biol. Ecol., 2006, vol. 335, no. 2, p. 188. https://doi.org/10.1016/j.jembe.2006.03.005

    Article  Google Scholar 

  26. Pernet, F., Tremblay, R., Redjah, I., et al., Physiological and biochemical traits correlate with differences in growth rate and temperature adaptation among groups of the eastern oyster Crassostrea virginica, J. Exp. Mar. Biol. Ecol., 2008, vol. 211, no. 6, p. 969. https://doi.org/10.1242/jeb.014639

    Article  Google Scholar 

  27. Powell, E.N., Mann, R., Ashton-Alcox, K.A., et al., The allometry of oysters: Spatial and temporal variation in the length–biomass relationships for Crassostrea virginica, J. Mar. Biol. Assoc. U. K., 2015, vol. 96, no. 5, p. 1. https://doi.org/10.1017/S0025315415000703

    Article  CAS  Google Scholar 

  28. Ramadhaniaty, M., Setyobudiandi, I., and Madduppa, H.H., Morphogenetic and population structure of two species marine bivalve (Ostreidae: Saccostrea cucullata and Crassostrea iredalei) in Aceh, Indonesia, Biodiversity, 2018, vol. 19, no. 3, p. 978. https://doi.org/10.13057/biodiv/d190329

    Article  Google Scholar 

  29. Reynaga-Franco, F.J., Aragón-Noriega, E.A., Grijalva-Chon, J.M., et al., Multi-model inference as criterion to determine differences in growth patterns of distinct Crassostrea gigas stocks, Aquacult. Int., 2019, vol. 27, no. 5, p. 1435. https://doi.org/10.1007/s10499-019-00396-0

    Article  Google Scholar 

  30. Tamayo, D., Ibarrola, I., Urrutia, M.B., and Navarro, E., The physiological basis for inter-individual growth variability in the spat of clams (Ruditapes philippinarum), Aquaculture, 2011, vol. 321, nos. 1–2, p. 113. https://doi.org/10.1016/j.aquaculture.2011.08.024

    Article  Google Scholar 

  31. Tamayo, D., Ibarrola, I., and Navarro, E., Thermal dependence of clearance and metabolic rates in slow- and fast-growing spats of manila clam Ruditapes philippinarum, J. Comp. Physiol., B, 2013, vol. 183, no. 7, p. 893. https://doi.org/10.1007/s00360-013-0764-1

    Article  PubMed  Google Scholar 

  32. Tamayo, D., Ibarrola, I., Urrutxurtu, I., and Navarro, E., Physiological basis of extreme growth rate differences in the spat of oyster (Crassostrea gigas), Mar. Biol., 2014, vol. 61, no. 7, p. 1627. https://doi.org/10.1007/s00227-014-2447-1

    Article  Google Scholar 

  33. Teixeira de Sousa, J., Matias, D., Joaquim, S., et al., Growth variation in bivalves: New insights into growth, physiology and somatic aneuploidy in the carpet shell Ruditapes decussatus, J. Exp. Mar. Biol. Ecol., 2011, vol. 406, nos. 1–2, p. 46. https://doi.org/10.1016/j.jembe.2011.06.001

    Article  Google Scholar 

  34. Thiriot-Quiévreux, C., Noel, T., Bougrier, S., and Dallot, S., Relationships between aneuploidy and growth rate in pair matings of the oyster Crassostrea gigas, Aquaculture, 1988, vol. 75, nos. 1–2, p. 89. https://doi.org/10.1016/0044-8486(88)90023-3

    Article  Google Scholar 

  35. Vialova, O.Yu., Comparative morphological analysis of diploid and triploid oysters, Crassostrea gigas, farmed in the Black Sea, Turk. J. Vet. Anim. Sci., 2020, vol. 44, no. 3, p. 740. https://doi.org/10.3906/vet-1907-50

    Article  CAS  Google Scholar 

  36. Vyalova, O.Yu., The first results of cultivation of triploid pacific oysters Crassostrea gigas in the Black sea (Southern coast of Crimea), Ekol. Morya, 2009, vol. 79, p. 37.

    Google Scholar 

  37. Vyalova, O.Yu., Growth and terms of obtaining marketable triploid oysters in Donuzlav Liman (Black Sea, Crimea), Morsk. Biol. Zh., 2019, vol. 4, no. 1, p. 24. https://doi.org/10.21072/mbj.2019.04.1.03

    Article  Google Scholar 

  38. Wang, Z., Guo, X., Allen, S.K., and Wang, R., Aneuploid pacific oyster (Crassostrea gigas Thunberg) as incidentals from triploid production, Aquaculture, 1999, vol. 173, no. 1, p. 347. https://doi.org/10.1016/S0044-8486(98)00457-8

    Article  Google Scholar 

  39. Zhugailo, S.S., Avdeeva, T.M., Pugach, M.N., and Adzhiumerov, E.N., Current state of water quality and bottom sediments in lake Donuzlav, Vodn. Bioresur. Sreda Obitaniya, 2018, vol. 1, no. 1, p. 32. http://hdl.handle.net/1834/14185.

  40. Zouros, E., Thiriot-Quievreux, C., and Kotoulas, G., The negative correlation between somatic aneuploidy and growth in the oyster Crassostrea gigas and implications for the effects of induced polyploidization, Genet. Res., 1996, vol. 68, no. 2, p. 109. https://doi.org/10.1017/S0016672300033991

    Article  Google Scholar 

Download references

Funding

This study was performed as part of State Task no. 121041400077-1 of the Kovalevsky Institute of Biology of the Southern Seas on the topic “Functional, Metabolic, and Toxicological Aspects of the Existence of Hydrobionts and Their Populations in Biotopes with Different Physicochemical Regimes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Vialova.

Ethics declarations

Conflict of interest. The author declares that she has no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by D. Zabolotny

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: FG, fast-growing mollusks; MG, medium-growing mollusks; SG, slow-growing mollusks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vialova, O.Y. Stable Differences in Growth Rates of Juvenile Triploid Oysters Crassostrea gigas Thunberg (Osteidae). Inland Water Biol 16, 1011–1016 (2023). https://doi.org/10.1134/S1995082923060263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082923060263

Keywords:

Navigation