Skip to main content
Log in

Responses of Unio pictorum to the Presence of Toxic and Nontoxic Strains of Microcystis aeruginosa

  • ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF HYDROBIONTS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

In order to assess the impact of cyanobacteria on mollusks under experimental conditions, the interaction of toxic and nontoxic strains of the cyanobacterium Microcystis aeruginosa (Kützing) Kützing and bivalve mollusks Unio pictorum (Linnaeus, 1758) has been studied. Cyanobacteria have a negative effect on bivalve mollusks: the 40% death of mollusks and deterioration of their adaptive capacity are recorded when cocultivated with M. aeruginosa at a high cell concentration. At the same time, there is no difference in the mortality of mollusks incubated with toxic and nontoxic cyanobacteria. A decrease in the content of microcystin-LR in the presence of bivalves is revealed. No statistically significant increase in the number of cyanobacteria in the water is noted after transit passage through the digestive system of bivalves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Cyanobacterial toxins: microcystins. Background document for development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments. Geneva: World Health Organization 2020 (WHO/HEP/ECH/WSH/2020.6). License: CC BY-NCSA 3.0 IGO.

REFERENCES

  1. Alimov, A.F., Funktsional’naya ekologiya presnovodnykh dvustvorchatykh mollyuskov (Functional Ecology of Freshwater Bivalves), Leningrad: Nauka, 1981.

  2. Bakhmet, I.N., Cardiac activity and oxygen consumption of blue mussels (Mytilus edulis) from the White Seain relation to body mass, ambient temperature and food availability, Polar Biol., 2017, vol. 40, p. 1959. https://doi.org/10.1007/s00300-017-2111-6

    Article  Google Scholar 

  3. Berezina, N.A., Tolerance of freshwater invertebrates to changes in water salinity, Russ. J. Ecol., 2003, vol. 34, no. 4, p. 261. https://doi.org/10.1023/A:1024597832095

    Article  Google Scholar 

  4. Berezina, N.A., Maximov, A.A., Umnova, L.P., et al., Excretion by benthic invertebrates as important source of phosphorus in oligotrophic ecosystem (Lake Krivoe, northern Russia), J. Sib. Fed. Univ., Biol., 2017, vol. 10, no. 4, p. 485. https://doi.org/10.17516/1997-1389-0046

    Article  Google Scholar 

  5. Berezina, N.A., Verbitsky, V.B., Sharov, A.N., and Chernova, E., Biomarkers in bivalve mollusks and amphipods for assessment of effects linked to cyanobacteria and elodea: Mesocosm study, Ecotoxicol. Environ. Saf., 2020, vol. 203, p. 110994. https://doi.org/10.1016/j.ecoenv.2020.110994

    Article  CAS  PubMed  Google Scholar 

  6. Berezina, N.A., Tiunov, A.V., Tsurikov, S.M., et al., Cyanobacteria as a food source for invertebrates: Results of a model experiment, Russ. J. Ecol., 2021, vol. 52, pp. 247–252. https://doi.org/10.1134/S1067413621030036

    Article  CAS  Google Scholar 

  7. Boegehold, A.G., Johnson, N.S., and Kashian, D.R., Dreissenid (quagga and zebra mussel) veligers are adversely affected by bloom forming cyanobacteria, Ecotoxicol. Environ. Saf., 2019, vol. 182, p. 109426. https://doi.org/10.1016/j.ecoenv.2019.109426

    Article  CAS  PubMed  Google Scholar 

  8. Bownik, A., Effects of cyanobacterial toxins, microcystins on freshwater invertebrates, Pol. J. Nat. Sci., 2013, vol. 28, no. 2, p. 185.

    Google Scholar 

  9. Burnett, N.P., Seabra, R., De Pirro, M., and Davis, S.W., An improved noninvasive method for measuring heartbeat of intertidal animals, Limnol. Oceanogr. Methods, 2013, vol. 11, p. 91. https://doi.org/10.4319/lom.2013.11.91

    Article  Google Scholar 

  10. Davis, T.W. and Gobler, C.J., Grazing by mesozooplankton and microzooplankton on toxic and non-toxic strains of Microcystis in the Transquaking River, a tributary of Chesapeake Bay, J. Plankton Res., 2010, vol. 33, no. 3, p. 415. https://doi.org/10.1093/plankt/fbq109

    Article  CAS  Google Scholar 

  11. Depledge, M.H., Aagaard, A., and Gyorkos, P., Assessment of trace metal toxicity using molecular, physiological and behavioral biomarkers, Mar. Pollut. Bull., 1995, vol. 31, p. 19. https://doi.org/10.1016/0025-326X(95)00006-9

    Article  CAS  Google Scholar 

  12. Dionisio Pires, L.M., Bontes, B.M., Van Donk, E., and Ibelings, B.W., Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha, J. Plankton Res., 2005, vol. 27, no. 4, p. 331. https://doi.org/10.1093/plankt/fbi008

    Article  Google Scholar 

  13. Gagné, F., Gélinas, M., Fortier, M., and Fournier, M., The effects of cyanobacterial blooms on the immune system of Elliptio complanata in urban and agricultural areas in the Yamaska River watershed, Invertebr. Survival J., 2018, vol. 15, p. 39.

    Google Scholar 

  14. Ger, K.A., Arneson, P., Goldman, C.R., and The, S.J., Species specific differences in the ingestion of Microcystis cells by the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi, J. Plankton Res., 2010a, vol. 32, no. 10, p. 1479. https://doi.org/10.1093/plankt/fbq071

    Article  CAS  Google Scholar 

  15. Ger, K.A., Teh, S.J., Baxa, D.V., et al., The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Francisco Estuary, Freshwater Biol., 2010b, vol. 55, no. 7, p. 1548. https://doi.org/10.1111/j.1365-2427.2009.02367.x

    Article  Google Scholar 

  16. Gibble, C.M., Peacock, M.B., and Kudela, R.M., Evidence of freshwater algal toxins in marine shellfish: Implications for human and aquatic health, Harmful Algae, 2016, vol. 59, p. 59. https://doi.org/10.1016/j.hal.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  17. Jeffrey, S.W. and Humprhråy, G.E., New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton, Biochim. Physiol., 1975, vol. 167, no. 2, p. 191. https://doi.org/10.1016/s0015-3796(17)30778-3

    Article  CAS  Google Scholar 

  18. Kholodkevich, S.V., Sharov, A.N., Chuiko, G.M., et al., Quality assessment of freshwater ecosystems by the functional state of bivalved mollusks, Water Resour., 2019, vol. 46, pp. 249–257. https://doi.org/10.1134/S0097807819020064

    Article  CAS  Google Scholar 

  19. Kholodkevich, S.V., Chuiko, G.M., Sharov, A.N., et al., Indicators of cardiac activity and oxidative stress in the mollusk Anodonta cygnea under short-term salt test load as biomarkers for assessing the state of the organism and the quality of the environment, Inland Water Biol., 2021, vol. 14, no. 6, p. 739. https://doi.org/10.1134/S1995082921060067

    Article  Google Scholar 

  20. Klishko, O., Lopes-Lima, M., Froufe, E., et al., Taxonomic reassessment of the freshwater mussel genus Unio (Bivalvia: Unionidae) in Russia and Ukraine based on morphological and molecular data, Zootaxa, 2017, vol. 4286, no. 1, p. 93. https://doi.org/10.11646/zootaxa.4286.1.4

    Article  Google Scholar 

  21. Kolmakov, V.I., Role of Microcystis aeruginosa passing through the digestive tracts of filter-feeding animals in eutrophic water reservoirs (review), Contemp. Probl. Ecol., 2014, vol. 7, no. 4, p. 455. https://doi.org/10.1134/S1995425514040052

  22. Kolmakov, V.I. and Gladyshev, M.I., Conceptual diversicology—A new section of theoretical ecology, Gidrobiol. Zh., 2003, vol. 39, no. 4, p. 111.

    Google Scholar 

  23. Komendantov, A.Yu., Khlebovich, V.V., and Aladin, N.V., Features of osmotic and ionic regulation of bivalves depending on environmental factors, Ekologiya, 1985, no. 5, p. 35.

  24. Kurbatova, S.A., Berezina, N.A., Sharov, A.N., et al., Interactions of cyanobacteria and aquatic organisms: Can crustaceans facilitate cyanobacteria bloom?, Russ. J. Ecol., 2022, vol. 53, no. 6, p. 565. https://doi.org/10.1134/S1067413622060078

    Article  CAS  Google Scholar 

  25. Medvedeva, N., Zaytseva, T., and Kuzikova, I., Cellular responses and bioremoval of nonylphenol by the bloom-forming cyanobacterium Planktothrix agardhii 1113, J. Mar. Syst., 2017, vol. 171, p. 120. https://doi.org/10.1016/j.jmarsys.2017.01.009

    Article  Google Scholar 

  26. Merel, S.D., Walker, R., Chicana, Sh., Snyder, et al., State of knowledge and concerns on cyanobacterial blooms and cyanotoxins, Environ. Int., 2013, vol. 59, p. 303. https://doi.org/10.1016/j.envint.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  27. Miller, M.A., Kudela, R.M., Mekebri, A., et al., Evidence for a novel marine harmful algal bloom: Cyanotoxin (microcystin) transfer from land to sea otters, PLoS One, 2010, vol. 5, no. 9, e12576. https://doi.org/10.1371/journal.pone.0012576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mohamed, Z.A., Bakr, A.A., and Ghramh, H.A., Grazing of the copepod Cyclops vicinus on toxic Microcystis aeruginosa: potential for controlling cyanobacterial blooms and transfer of toxins, Oceanol. Hydrobiol. Stud., 2018, vol. 47, no. 3, p. 296. https://doi.org/10.1515/ohs-2018-0028

    Article  CAS  Google Scholar 

  29. Ostroumov, S.A., Gidrobionty v samoochishchenii vod i biogennoi migratsii elementov (Hydrobionts in Self-purification of Water and Biogenic Migration of Elements), Moscow: MAKS, 2008.

  30. Paerl, H.W., Controlling cyanobacterial harmful blooms in freshwater ecosystems, Microb. Biotechnol., 2017, vol. 10, no. 5, p. 1106. https://doi.org/10.1111/1751-7915.12725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paldavičienė, A., Zaiko, A., Mazur-Marzec, H., and Razinkovas-Baziukas, A., Bioaccumulation of microcystins in invasive bivalves: A case study from the boreal lagoon ecosystem, Oceanologia, 2015, vol. 57, no. 1, p. 93. https://doi.org/10.1016/j.oceano.2014.10.001

    Article  Google Scholar 

  32. Rippka, R., Deruelles, J., Waterbury, J.B., et al., Genetic assignments, strain histories and properties of pure cultures of cyanobacteria, Microbiology, 1979, vol. 111, p. 1. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  33. Sipiä, V.O., Kankaanpää, H.T., Pflugmacher, S., et al., Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), Mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the Northern Baltic Sea, Ecotoxicol. Environ. Saf., 2002, vol. 53, no. 2, p. 305. https://doi.org/10.1006/eesa.2002.2222

    Article  CAS  PubMed  Google Scholar 

  34. Sitnikova, T., Kiyashko, S.I., Maximova, N., et al., Resource partitioning in endemic species of Baikal gastropods indicated by gut contents, stable isotopes and radular morphology, Hydrobiologia, 2012, vol. 682, p. 75. https://doi.org/10.1007/s10750-011-0685-5

    Article  CAS  Google Scholar 

  35. Sutradhar, M., The current scenario and future aspects of Cyanotoxins: A Review Study, J. Mater. Environ. Sci., 2022, vol. 13, no. 07, p. 768.

    CAS  Google Scholar 

  36. Vanderploeg, H.A., Johengen, T.H., and Liebig, J.R., Feedback between zebra mussel selective feeding and algal composition affects mussel condition: Did the regime changer pay a price for its success?, Freshwater Biol., 2009, vol. 54, no. 1, p. 47. https://doi.org/10.1111/j.1365-2427.2008.02091.x

    Article  Google Scholar 

  37. Verbitsky, V.B., Kurbatova, S.A., Berezina, N.A., et al., Responses of aquatic organisms to cyanobacteria and elodea in microcosms, Dokl. Biol. Sci., 2018, vol. 488, p. 136. https://doi.org/10.1134/S0012496619050028

  38. Wood, R., Acute animal and human poisonings from cyanotoxin exposure—A review of the literature, Environ. Int., 2016, vol. 91, p. 276. https://doi.org/10.1016/j.envint.2016.02.026

    Article  CAS  PubMed  Google Scholar 

  39. Xing, Q., Zhang, L., Li, Y., et al., Development of novel cardiac indices andassessment of factors affecting cardiac activity in a bivalve mollusk Chlamys farreri, Front. Physiol., 2019, vol. 10, p. 293. https://doi.org/10.3389/fphys.2019.00293

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zurawell, R.W., Chen, H., Burke, J.M., and Prepas, E.E., Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments, J. Toxicol. Environ. Health, Part B, 2005, vol. 8, no. 1, p. 1. https://doi.org/10.1080/10937400590889412

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank S.V. Kholodkevich (St. Petersburg Federal Research Center, Russian Academy of Sciences) for providing equipment for recording the heart rate in mollusks.

Funding

The work was carried out as part of the state task of the Ministry of Science and Higher Education of the Russian Federation, topics 122041100085-8, 122041100086-5, and 121051100099-5, as well as with financial support from the Government of the Tyumen oblast according to the project of the West Siberian Interregional Scientific and Educational Center, no. 89-DON (2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sharov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: HPLC, high performance liquid chromatography; Chl, chlorophyll; HR, heart rate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharov, A.N., Zaytseva, T.B. & Medvedeva, N.G. Responses of Unio pictorum to the Presence of Toxic and Nontoxic Strains of Microcystis aeruginosa. Inland Water Biol 16, 1159–1165 (2023). https://doi.org/10.1134/S1995082923060214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082923060214

Keywords:

Navigation