Skip to main content
Log in

Effect of a Gradual Salinity Increase on Water Quality, Survival and Growth Performance of Hybrid Red Tilapia (Oreochromis mossambicus × O. niloticus)

  • ICHTHYOLOGY
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

We studied the effect of increasing salinity with respect to growth performance and water quality of Hybrid Red Tilapia (Oreochromis mossambicus × O. niloticus) (1.29 ± 0.48 g and 4.05 ± 0.48 cm) for 77 days, and we compared the obtained results to freshwater rearing. The results indicate no significant difference in all physico-chemical parameters between both variants, which are within the accepted range for fish growth. Better growth performance regarding weight was observed in freshwater rearing. However, in terms of length, the increasing salinity rearing showed the best growth performance. The survival rate decreased with a salinity increase, unlike freshwater rearing which showed 100%. Hybrid Red Tilapia raised in freshwater revealed isometric growth. However, Hybrid Red Tilapia reared in increasing salinity reported negative allometric growth. A strong positive correlation was observed between salinity and total length and weight, and between total length and total weight, while survival was strongly negatively correlated with salinity and total weight. Positive loadings of salinity, \({\text{NH}}_{4}^{ + },\) total length, and total weight were observed relatively to the factor 1, whereas \({\text{NO}}_{2}^{ - }\) and survival show negative loadings. For the factor 2, the chemical variables (\({\text{NO}}_{2}^{ - },\) \({\text{PO}}_{4}^{{3 - }}\) and \({\text{NH}}_{4}^{ + }\)) were the important variables. Our experiment suggests that Hybrid Red Tilapia can be reared in biotopes that are subject to climate change or that experience a hot and dry climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Altinok, I. and Grizzle, J.M., Effects of brackish water on growth, feed conversion and energy absorption efficiency by juvenile euryhaline and freshwater stenohaline fishes, J. Fish Biol., 2001, vol. 59, no. 5, p. 1142. https://doi.org/10.1111/j.1095-8649.2001.tb00181.x

    Article  Google Scholar 

  2. Anufriieva, E.V., How can saline and hypersaline lakes contribute to aquaculture development? A review, J. Oceanol. Limnol., 2018, vol. 36, no. 6, pp. 2002–2009. https://doi.org/10.1007/s00343-018-7306-3

    Article  CAS  Google Scholar 

  3. Avnimelech, Y., Carbon/nitrogen ratio as a control element in aquaculture systems, Aquaculture, 1999, vol. 176, nos. 3–4, p. 227. https://doi.org/10.1016/S0044-8486(99)00085-X

    Article  CAS  Google Scholar 

  4. Awal, M., Kuri, K.C., and Sarker, S., Effect of salinity on the oxygen consumption of tilapia fingerlings, Daffodil Int. Univ. J. Sci. Technol., 2012, vol. 7, no. 1, p. 12. https://doi.org/10.3329/diujst.v7i1.9581

    Article  Google Scholar 

  5. Azevedo, R.V., Oliveira, K.F., Flores-Lopes, F., et al., Responses of Nile tilapia to different levels of water salinity, Lat. Am. J. Aquat. Res., 2015, vol. 43, no. 5, p. 828. https://doi.org/10.3856/vol43-issue5-fulltext-3

    Article  Google Scholar 

  6. Bagenal, T., Methods for the Assessment of Fish Production in Fresh Waters, London: Blackwell, 1978.

    Google Scholar 

  7. Bilan de l’équipe du Tilapia 2018, Division Aquaculture, CNRDPA, 2018.

  8. Boeuf, G. and Payan, P., How should salinity influence fish growth?, Comp. Biochem. Physiol., C: Comp. Pharmacol., 2001, vol. 130, no. 4, p. 411. https://doi.org/10.1016/S1532-0456(01)00268-X

    Article  CAS  Google Scholar 

  9. Boyd, C.E., Water Quality in Ponds for Aquaculture, Birmingham: Alabama Agric. Exp. Stn., Auburn Univ., 1990.

    Google Scholar 

  10. Bradai, L., Bissati, S., and Chenchouni, H., Desert truffles of the North Algerian Sahara: diversity and bioecology, Emirates J. Food Agric., 2014, vol. 26, no. 5, p. 425. https://doi.org/10.9755/ejfa.v26i5.16520

    Article  Google Scholar 

  11. Cai, J., Zhou, X., Yan, X., et al., Top 10 species groups in global aquaculture 2017, Food and Agriculture Organization of the United Nations, FAO Fisheries and Aquaculture Department, 2019.

    Google Scholar 

  12. Chabet dis, C., Meslem, N., and Itchir, R., Biology features and parasites study of Mullet (Mugilidae) caught from Algerian coast, Hippocampus, 2022, vol. 1, no. 7, p. 7.

    Google Scholar 

  13. Couture, I., Analyse d’eau pour fin d’irrigation, Agri-Vision, 2004, p. 8.

    Google Scholar 

  14. Das, M., Das, G., and Deka, P., Length-Weight relationship and relative condition factor of Puntius sophore (Hamilton, 1822) and Systomus sarana (Hamilton, 1822) of Deepar Beel (wetland) of Assam, India, Int. J. Fish. Aquat. Studies, 2015, vol. 3, no. 2, p. 476.

    Google Scholar 

  15. El-Sherif, M.S. and El-Feky, A.M.I., Performance of Nile tilapia (Oreochromis niloticus) fingerlings. I. Effect of pH, Int. J. Agric. Biol., 2009, vol. 11, no. 3, p. 297.

    Google Scholar 

  16. El-Zaeem, S.Y., Ahmed, M.M.M., Salama, M.E., El-Maremie, H.A., Production of salinity tolerant Nile tilapia, Oreochromis niloticus through traditional and modern breeding methods: II. Application of genetically modified breeding by introducing foreign DNA into fish gonads, Afr. J. Biotechnol., 2011, vol. 10, no. 4, p. 684. https://doi.org/10.13140/2.1.4462.4007

    Article  CAS  Google Scholar 

  17. Emerenciano, M.G.C., Martínez-Córdova, L.R., Martínez-Porchas, M., and Miranda-Baeza, A., Biofloc technology (BFT): a tool for water quality management in aquaculture, Water Qual., 2017, vol. 5, p. 92. https://doi.org/10.5772/66416

    Article  CAS  Google Scholar 

  18. Fridman, S., Bron, J., and Rana, K., Influence of salinity on embryogenesis, survival, growth and oxygen consumption in embryos and yolk-sac larvae of the Nile tilapia, Aquaculture, 2012, vol. 334, p. 182. https://doi.org/10.1016/j.aquaculture.2011.12.034

    Article  CAS  Google Scholar 

  19. Fuadi, A.A., Hasly, I.R.J., Azkia, L.I., and Irham, M., Response of tilapia (Oreochromis niloticus) behavior to salinity differences: a laboratory scale study, IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 674, p. 012060, https://doi.org/10.1088/1755-1315/674/1/012060

  20. Idder, T., Idder, A., Tankari Dan-Badjo, et al., Les oasis du Sahara algérien, entre excédents hydriques et salinité. L’exemple de l’oasis de Ouargla, Rev. Sci. L’eau, 2014, vol. 27, no. 2, p. 155. https://doi.org/10.7202/1025565a

    Article  Google Scholar 

  21. IPCC, Summary for Policymakers, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M., Eds., Cambridge: Cambridge Univ. Press, 2013.

    Google Scholar 

  22. Iqbal, K.J., Qureshi, N.A., Ashraf, M., et al., Effect of different salinity levels on growth and survival of Nile tilapia (Oreochromis niloticus), J. Anim. Plant Sci., 2012, vol. 22, no. 4, p. 919.

    CAS  Google Scholar 

  23. Jia, Q.X., Anufriieva, E., Liu, X.F., et al., Intentional introduction of Artemia sinica (Anostraca) in the high-altitude Tibetan Lake Dangxiong Co: the new population and consequences for the environment and for humans, Chin. J. Oceanol. Limnol., 2015, vol. 33, no. 6, p. 1451–1460. https://doi.org/10.1007/s00343-015-4371-8

    Article  CAS  Google Scholar 

  24. Kang’ombe, J. and Brown, J.A., Effect of salinity on growth, feed utilization, and survival of Tilapia rendalli under laboratory conditions, J. Appl. Aquacult., 2008, vol. 20, no. 4, p. 256. https://doi.org/10.1080/10454430802498229

    Article  Google Scholar 

  25. Kavembe, G.D., Meyer, A., and Wood, C.M., Fish populations in East African saline lakes, in Soda Lakes of East Africa, Cham: Springer-Verlag, 2016, pp. 227–257. https://doi.org/10.1007/978-3-319-28622-8_9

  26. Konan, K.J., Annigbé, J.E., Konan, N., and Boua, C.A., Length-weight relationship and condition factor for 18 fish species from Ono, Kodjoboué and Hébé lagoons, Southeast of Ivory Coast, Int. J. Fish. Aquat. Stud., 2017, vol. 5, p. 13.

    Google Scholar 

  27. Küçük, S., Karul, A., Yildirim, S., and Gamsiz, K., Effects of salinity on growth and metabolism in blue tilapia (Oreochromis aureus), Afr. J. Biotechnol., 2013, vol. 12, no. 19, p. 2715. https://doi.org/10.5897/AJB12.1296

    Article  Google Scholar 

  28. Kumolu-Johnson, C.A. and Ndimele, P.E., Length-weight relationships and condition factors of twenty-one fish species in Ologe Lagoon, Lagos, Nigeria, Asian J. Agric. Sci., 2010, vol. 2, no. 4, p. 174.

    Google Scholar 

  29. Laverty, G. and Skadhauge, E., Adaptation of teleosts to very high salinity, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2012, vol. 163, no. 1, p. 1. https://doi.org/10.1016/j.cbpa.2012.05.203

    Article  CAS  Google Scholar 

  30. Le Développement de L’aquaculture en Algérie en Collaboration Avec la FAO-Bilan 2008–2016, Rome: FAO, 2018, no. 1176, p. 112.

  31. Malcolm, C., Beverdije, H., and McAndrew, B., Tilapias: Biology and Exploitation, Scotland: Kluwer Acad. Publ., 2000.

    Google Scholar 

  32. Martínez-Cordero, F.J., Delgadillo, T.S., Sanchez-Zazueta, E., and Cai, J., Tilapia Aquaculture in Mexico—Assessment with a Focus on Social and Economic Performance, Rome: FAO, 2021, no. 1219.

  33. Maynard, D.N. and Hochmuth, G.J., Knott’s Handbook for Vegetable Growers, 2006. https://doi.org/10.1002/9780470121474

  34. Mommsen, T., Growth and metabolism, in Physiology of Fishes, Boca Raton: CRC, 1998.

    Google Scholar 

  35. Morgan, J.D. and Iwama, G.K., Energy cost of NaCl transport in isolated gills of Cutthroat trout, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 1999, vol. 277, no. 3, p. R631. https://doi.org/10.1152/ajpregu.1999.277.3.R631

    Article  CAS  Google Scholar 

  36. Obasohan, E.E., Obasohan, E.E., Imasuen, J.A., and Isidahome, C.E., Preliminary studies of the length-weight relationships and condition factor of five fish species from Ibiekuma stream, Ekpoma, Edo state, Nigeria, J. Agric. Res. Dev., 2012, vol. 2, no. 3, p. 61.

    Google Scholar 

  37. Okamoto, T., Tadahide, K., Koichiro, et al., Influence of salinity on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption, Aquaculture, 2009, vol. 293, nos. 1–2, p. 113. https://doi.org/10.1016/j.aquaculture.2009.04.005

    Article  Google Scholar 

  38. Oubadi, M., Hamou, A., Faci, M., and Farhi, Y., Impacts des canicules sur les contraintes environnementales dans la région de Béchar, J. Algér. Rég. Arides, 2020, vol. 14, no. 1, p. 80–101.

    Google Scholar 

  39. Pauly, D., Fish Population Dynamics in Tropical Waters: A Manual for Use with Programmable Calculators, Manila: ICLARM, 1984.

    Google Scholar 

  40. Putra, I., Effendi, I., Lukistyowati, I., et al., Effect of different biofloc starters on ammonia, nitrate, and nitrite concentrations in the cultured tilapia Oreochromis niloticus system, F1000 Res., 2020, vol. 9, p. 293. https://doi.org/10.12688/f1000research.22977.1

    Article  CAS  Google Scholar 

  41. Reis, A.B., Sant’Ana, D.D.M.G., Azevedo, J.F.D., et al., The influence of the aquatic environment in tanks sequetially interconnected with PVC pipes on the gill epithelium and lamellas of tilapia (Oreochromis niloticus), Pesqui. Vet. Bras., 2009, vol. 29, no. 4, p. 303. https://doi.org/10.1590/S0100-736X2009000400005

    Article  Google Scholar 

  42. Ricker, W.E., Computation and interpretation of the biological statistics of fish populations, Bull. Fish. Res. Board Can., 1975, vol. 191, no. 1, p. 382.

    Google Scholar 

  43. Rodier, J., Legube, B., Merlet, N., and Brunet, R., L’analyse de L’eau, Eaux naturelles, eaux Résiduaires, eau de Mer, Dunod, 2009. https://books.google.dz/books?id=qUEGsUBZkL0C

  44. Rodriguez-Montes De Oca, G.A., Román-Reyes, J.C., Alaniz-Gonzalez, A., et al., Effect of salinity on three tilapia (Oreochromis sp.) strains: hatching rate, length and yolk sac size, Int. J. Aquat. Sci., 2015, vol. 6, no. 1, p. 96.

    Google Scholar 

  45. Sarkar, U.K., Negi, R.S., Deepak, P.K., et al., Biological parameters of the endangered fish Chitala chitala (Osteoglossiformes: Notopteridae) from some Indian rivers, Fish. Res., 2008, vol. 90, nos. 1–3, p. 170. https://doi.org/10.1016/j.fishres.2007.10.014

    Article  Google Scholar 

  46. Sparks, R.T., Shepherd, B.S., Ron, B., et al., Effects of environmental salinity and 17α-methyltestosterone on growth and oxygen consumption in the tilapia Oreochromis mossambicus, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2003, vol. 136, no. 4, p. 657. https://doi.org/10.1016/S1096-4959(03)00245-8

    Article  CAS  Google Scholar 

  47. Velan, A., Hulata, G., Ron, M., and Cnaani, A., Comparative time-course study on pituitary and branchial response to salinity challenge in Mozambique tilapia (Oreochromis mossambicus) and Nile tilapia (O. niloticus), Fish Physiol. Biochem., 2011, vol. 37, no. 4, p. 863. https://doi.org/10.1007/s10695-011-9484-1

    Article  CAS  PubMed  Google Scholar 

  48. Villegas, C.T., Evaluation of the salinity tolerance of Oreochromis mossambicus, O. niloticus and their F1 hybrids, Aquaculture, 1990, vol. 85, p. 281. https://doi.org/10.1016/0044-8486(90)90027-K

    Article  Google Scholar 

  49. Wang, J.Q., Lui, H., Po, H., and Fan, L., Influence of salinity on food consumption, growth and energy conversion efficiency of common carp (Cyprinus carpio) fingerlings, Aquaculture, 1997, vol. 148, nos. 2–3, p. 115. https://doi.org/10.1016/S0044-8486(96)01334-8

    Article  Google Scholar 

  50. Watanabe, W.O., French, K.E., Ernst, D.H., et al., Salinity during early development influences growth and survival of Florida red tilapia in brackish and seawater, J. World Aquacult. Soc., 1989, vol. 20, no. 3, p. 134.

    Article  Google Scholar 

  51. Watanabe, W.O., Ellingson, L.J., Olla, B.L., et al., Salinity tolerance and seawater survival vary ontogenetically in Flo-rida red tilapia, Aquaculture, 1990, vol. 87, p. 311. https://doi.org/10.1016/0044-8486(90)90068-X

    Article  Google Scholar 

  52. Yılmaz, S. and Polat, N., Length-weight relationship and condition factor of Pontic shad, Alosa immaculate (Pisces: Clupeidae) from the Southern Black Sea, Res. J. Fish. Hydrobiol., 2011, vol. 6, p. 49.

    Google Scholar 

  53. Yuan, X., Yang, H., Wang, L., et al., Effects of salinity on energy budget in pond-cultured sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea), Aquaculture, 2010, vol. 306, nos. 1–4, p. 348. https://doi.org/10.1016/j.aquaculture.2010.04.026

    Article  CAS  Google Scholar 

  54. Ziza, F.Z., Daoud, Y., Laboudi, A., et al., Evolution de la salinité dans les périmètres de mise en valeur et conséquences sur la diminution des rendements du blé dans une région saharienne: Cas de la région d’Adrar, Alger. J. Arid Environ., 2012, vol. 2, no. 2, p. 12.

    Google Scholar 

Download references

Funding

This study was funded by the National Center for Research and Development of Fisheries and Aquaculture (CNRDPA).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Chabet dis: Investigation, methodology, conceptualization, formal analysis, visualization, writing-original draft and supervision. Itchir Rachida: Investigation, methodology and validation. Chaichi Wissam: Visualization, validation, review. Abidi Bouchra: Conceptualization, methodology, formal analysis and investigation. Larbi Ben Houra Besma: Conceptualization, methodology, formal analysis and investigation. Didani Amira: Conceptualization, methodology, formal analysis, investigation, review and editing. Seffah Amina: Conceptualization, methodology, formal analysis, investigation, review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to C. Chabet dis.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabet dis, C., Amira, D., Rachida, I. et al. Effect of a Gradual Salinity Increase on Water Quality, Survival and Growth Performance of Hybrid Red Tilapia (Oreochromis mossambicus × O. niloticus). Inland Water Biol 16, 1112–1121 (2023). https://doi.org/10.1134/S199508292306007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508292306007X

Keywords:

Navigation