Skip to main content
Log in

Thermophysical Properties of Dense Molten \({\text{Al}}_{2}{\text{O}}_{3}\) Determined by Aerodynamic Levitation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Aerodynamic levitation (ADL) is a widely used contactless technique for evaluating the thermophysical properties of molten materials. During data analysis, these molten samples are typically assumed to be bubble-free and to adopt an oblate spheroid shape. However, these assumptions have not been empirically validated. The presence of trapped bubbles and potential deformation at the bottom of the levitated sample, which is obscured from view by the levitation nozzle, can lead to an underestimation of the sample’s density. These factors could also interfere with the sample’s damped oscillation, thereby affecting the reliability of the measured surface tension and viscosity. Consequently, in this study, we address these issues by using smaller alumina samples to minimize sample deformation and by inspecting each sample’s cross-section after cooling for trapped bubbles. This approach enabled us to mitigate the impact of these potential distortions on the measured thermophysical properties of molten alumina. Our findings reveal that the density of dense molten alumina can be expressed as 2.917\(-\)1.228\(\times 10^{-4}\)(T-2327) [g \(\cdot \hbox {cm}^{-3}\)] from 1978 K to 2789 K. Additionally, between 2375 K and 2770 K, we determined the surface tension of alumina to be 0.632\(-\)2.310\(\times 10^{-5}\)(T-2327)[N \(\cdot \hbox {m}^{-1}\)] and the viscosity to be \(0.577e^{9.743 \times 10^{3}/\hbox {T}}\)[m \(\cdot\) Pa \(\cdot\) s].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author, Y. Sun, on reasonable request.

References

  1. S. Hiemstra, D. Prins, G. Gabrielse, J. Van Zytveld, Phys. Chem. Liquids 6, 271 (1977). https://doi.org/10.1080/00319107708084145

    Article  Google Scholar 

  2. L. Wang, Q. Wang, A. Xian, K. Lu, J. Phys. Condens. Matter 15, 777 (2003). https://doi.org/10.1088/0953-8984/19/13/139001

    Article  ADS  Google Scholar 

  3. T. Tanaka, M. Matsuda, K. Nakao, Y. Katayama, D. Kaneko, S. Hara, X. Xing, Z. Qiao, Int. J. Mater. Res. 92, 1242 (2022). https://doi.org/10.3139/ijmr-2001-0228

    Article  Google Scholar 

  4. I. Egry, E. Ricci, R. Novakovic, S. Ozawa, Adv. Colloid Interface Sci. 159, 198 (2010). https://doi.org/10.1016/j.cis.2010.06.009

    Article  Google Scholar 

  5. C. Garcia-Cordovilla, E. Louis, A. Pamies, J. Mater. Sci. 21, 2787 (1986). https://doi.org/10.1007/BF00551490

    Article  ADS  Google Scholar 

  6. M. Kehr, W. Hoyer, I. Egry, Int. J. Thermophys. 28, 1017 (2007). https://doi.org/10.1007/s10765-007-0216-9

    Article  ADS  Google Scholar 

  7. W.K. Rhim, K. Ohsaka, P.F. Paradis, R.E. Spjut, Rev. Sci. Instrum. 70, 2796 (1999). https://doi.org/10.1063/1.1149797

    Article  ADS  Google Scholar 

  8. T. Ishikawa, P.F. Paradis, S. Yoda, Rev. Sci. Instrum. 72, 2490 (2001). https://doi.org/10.1063/1.1368861

    Article  ADS  Google Scholar 

  9. P.F. Paradis, T. Ishikawa, G.W. Lee, D. Holland-Moritz, J. Brillo, W.K. Rhim, J.T. Okada, Mater. Sci. Eng. R Rep. 76, 1 (2014). https://doi.org/10.1016/j.mser.2013.12.001

    Article  Google Scholar 

  10. M. Watanabe, M. Adachi, H. Fukuyama, J. Mater. Sci. 51, 3303 (2016). https://doi.org/10.1007/s10853-015-9644-2

    Article  ADS  Google Scholar 

  11. J. Brillo, I. Egry, Int. J. Thermophys. 24, 1155 (2003). https://doi.org/10.1023/A:1025021521945

    Article  Google Scholar 

  12. B. Glorieux, M.L. Saboungi, F. Millot, J. Enderby, J.C. Rifflet, A.I.P. Conf, Proc. 552, 316 (2001). https://doi.org/10.1063/1.1357941

    Article  Google Scholar 

  13. D. Langstaff, M. Gunn, G.N. Greaves, A. Marsing, F. Kargl, Rev. Sci. Instrum. 84, 124901 (2013). https://doi.org/10.1063/1.4832115

    Article  ADS  Google Scholar 

  14. F. Kargl, C. Yuan, G.N. Greaves, Int. J. Microgravity Sci. Appl. 32, 320212 (2015). https://doi.org/10.15011/ijmsa.32.320212

    Article  Google Scholar 

  15. P.F. Paradis, T. Ishikawa, S. Yoda, Int. J. Thermophys. 23, 825 (2002). https://doi.org/10.1023/A:1015459222027

    Article  Google Scholar 

  16. T. Ishikawa, P.F. Paradis, J.T. Okada, M.V. Kumar, Y. Watanabe, J. Chem. Thermodyn. 65, 1 (2013). https://doi.org/10.1016/j.jct.2013.05.036

    Article  Google Scholar 

  17. P.F. Paradis, T. Ishikawa, Y. Saita, S. Yoda, Jpn. J. Appl. Phys. 43, 1496 (2004). https://doi.org/10.1143/JJAP.43.1496

    Article  ADS  Google Scholar 

  18. P.F. Paradis, T. Ishikawa, Jpn. J. Appl. Phys. 44, 5082 (2005). https://doi.org/10.1143/JJAP.44.5082

    Article  ADS  Google Scholar 

  19. H. Tamaru, C. Koyama, H. Saruwatari, Y. Nakamura, T. Ishikawa, T. Takada, Microgravity Sci. Technol. 30, 643 (2018). https://doi.org/10.1007/s12217-018-9631-8

    Article  ADS  Google Scholar 

  20. C. Koyama, T. Ishikawa, H. Oda, H. Saruwatari, S. Ueno, M. Oshio, Y. Watanabe, Y. Nakata, J. Am. Ceram. Soc. 104, 2913 (2021). https://doi.org/10.1111/jace.17674

    Article  Google Scholar 

  21. T. Ishikawa, J.T. Okada, P.F. Paradis, Y. Watanabe, J. Chem. Thermodyn. 112, 7 (2017). https://doi.org/10.1016/j.jct.2017.04.006

    Article  Google Scholar 

  22. Y. Sun, H. Muta, Y. Ohishi, Rev. Sci. Instrum. 92, 095102 (2021). https://doi.org/10.1063/5.0055555

    Article  ADS  Google Scholar 

  23. M. Watanabe, Y. Takahashi, S. Imaizumi, Y. Zhao, M. Adachi, M. Ohtsuka, A. Chiba, Y. Koizumi, H. Fukuyama, Thermochim. Acta 708, 179119 (2022). https://doi.org/10.1016/j.tca.2021.179119

    Article  Google Scholar 

  24. T. Kondo, H. Muta, K. Kurosaki, F. Kargl, A. Yamaji, M. Furuya, Y. Ohishi, Heliyon 5, e02049 (2019). https://doi.org/10.1016/j.heliyon.2019.e02049

    Article  Google Scholar 

  25. Y. Gong, L. Zhang, Y. Yuan, Q. Guo, W. Ma, S. Huang, Front. Energy Res. 10, 892406 (2022). https://doi.org/10.3389/fenrg.2022.892406

    Article  Google Scholar 

  26. P.F. Paradis, T. Ishikawa, J.T. Okada, Technol. Rev. 58, 124 (2014). https://doi.org/10.1595/147106714X682355

    Article  Google Scholar 

  27. M. Watanabe, M. Adachi, M. Uchikoshi, H. Fukuyama, Fluid Ph. Equilibria 515, 112596 (2020). https://doi.org/10.1016/j.fluid.2020.112596

    Article  Google Scholar 

  28. S.K. Chung, D.B. Thiessen, W.K. Rhim, Rev. Sci. Instrum. 67, 3175 (1996). https://doi.org/10.1063/1.1147584

    Article  ADS  Google Scholar 

  29. S. Hakamada, A. Nakamura, M. Watanabe, F. Kargl, Int. J. Microgravity Sci. Appl. 34, 340403 (2017)

    Google Scholar 

  30. B. Glorieux, F. Millot, J. Rifflet, Int. J. Thermophys. 23, 1249 (2002). https://doi.org/10.1023/A:1019848405502

    Article  Google Scholar 

  31. B. Glorieux, F. Millot, J.C. Rifflet, J.P. Coutures, Int. J. Thermophys. 20, 1085 (1999). https://doi.org/10.1023/A:1022650703233

    Article  Google Scholar 

  32. T. Ishikawa, P.F. Paradis, C. Koyama, Front. Mater. Sci. 9, 954126 (2022). https://doi.org/10.3389/fmats.2022.954126

    Article  Google Scholar 

  33. Y. Sun, G. Duan, A. Yamaji, T. Takatani, H. Muta, Y. Ohishi, NPJ Microgravity 8, 26 (2022). https://doi.org/10.1038/s41526-022-00213-8

    Article  ADS  Google Scholar 

  34. Y. Sun, H. Muta, Y. Ohishi, Microgravity Sci. Technol. 33, 32 (2021). https://doi.org/10.1007/s12217-021-09883-7

    Article  ADS  Google Scholar 

  35. G.B. Rybicki, A.P. Lightman, Radiative Processes in Astrophysics (Wiley, New York, 1991)

    Google Scholar 

  36. S. Schneider, Pure Appl. Chem. 21, 115 (1970). https://doi.org/10.1351/pac197021010115

    Article  Google Scholar 

  37. J.W. Strutt, Proc. R. Soc. Lond. 29, 71 (1879). https://doi.org/10.1098/rspl.1879.0015

    Article  Google Scholar 

  38. H. Lamb, Proc. Lond. Math. Soc. 1–13, 51 (1881). https://doi.org/10.1112/plms/s1-13.1.51

    Article  Google Scholar 

  39. J. Brillo, G. Kolland, J. Mater. Sci. 51, 4888 (2016). https://doi.org/10.1007/s10853-016-9794-x

    Article  ADS  Google Scholar 

  40. I. Egry, D. Holland-Moritz, R. Novakovic, E. Ricci, R. Wunderlich, N. Sobczak, Int. J. Thermophys. 31, 949 (2010). https://doi.org/10.1007/s10765-010-0704-1

    Article  ADS  Google Scholar 

  41. M. Saffren, D.D. Elleman, W.K. Rhim, Proceedings of the 2d International Colloq. on Drops and Bubbles, 19820015546 (1982)

  42. E.C. Andrade, Nature 125, 309 (1930). https://doi.org/10.1038/125309b0

    Article  ADS  Google Scholar 

  43. F. Li, X.Y. Yin, X.Z. Yin, J. Fluid Mech. 931, A33 (2022). https://doi.org/10.1017/jfm.2021.981

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Innovative Nuclear Research and Development Program Grant Number JPMXD0220354598.

Author information

Authors and Affiliations

Authors

Contributions

YO conceptualized the project and secured the necessary funding. YS drafted the main body of the manuscript. TT was responsible for data collection. YS and TT jointly analyzed the collected data, with YS also preparing all figures included in the manuscript. HM, SF, and YO oversaw the experimental work. TK, SK, FK, and YO offered constructive feedback on experimental procedures and contributed to data analysis. All authors participated in manuscript review.

Corresponding authors

Correspondence to Yifan Sun or Yuji Ohishi.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 12000 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Takatani, T., Muta, H. et al. Thermophysical Properties of Dense Molten \({\text{Al}}_{2}{\text{O}}_{3}\) Determined by Aerodynamic Levitation. Int J Thermophys 45, 11 (2024). https://doi.org/10.1007/s10765-023-03302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03302-2

Keywords

Navigation