Skip to main content
Log in

Enhanced Photoanodic Activity and Outermost Surface Crystallinity of Tungsten Oxide via High-temperature Sintering

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Tungsten oxide (WO3) is a promising photoanode material capable of water oxidation under visible-light irradiation. Although WO3 is usually prepared via sintering at 500 °C–550˚C, this work shows that high-temperature sintering (i.e., at 600 °C) can lead to efficient output at the WO3 photoanode. The material characteristics such as the crystal system, surface structure, film thickness, and optical properties were essentially independent of the sintering temperatures employed. However, the high-temperature-sintered WO3 showed low charge transfer resistance at the electrode–electrolyte interface, resulting in improved charge injection efficiency for water oxidation at the WO3 photoanode. WO3 sintered at 550 °C and 600 °C showed the similar visible Raman spectra with strong band intensities, indicative of improved crystallinity in WO3 bulk particularly in the comparison with WO3 sintered at 450 °C. However, the ultraviolet Raman spectrum exhibited intense bands for only the WO3 prepared at 600 °C, indicating the enhanced crystallization of the WO3 outermost surface. Thus, the high crystallinity in the WO3 bulk and at its surface results in efficient photoanodic output owing to the suppression of electron–hole recombination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. M.M. Abouelela, G. Kawamura, W.K. Tan, A. Matsuda. J. Colloid Interface Sci. 629, 958–970 (2023). https://doi.org/10.1016/j.jcis.2022.09.041

  2. X. Shi, Q. Wu, C. Cui, ACS Catal. 13, 1470–1476 (2023). https://doi.org/10.1021/acscatal.2c05325

    Article  CAS  Google Scholar 

  3. Q. Zhang, R. Liu, T. Liu, Mol. Catal. 539, 113005 (2023). https://doi.org/10.1016/j.mcat.2023.113005

    Article  CAS  Google Scholar 

  4. H. Kong, H. Yang, J.-S. Park, W.-S. Chae, H.Y. Kim, J. Park, J.H. Lee, S.Y. Choi, M. Park, H. Kim, Y. Song, H. Park, J. Yeo, Adv. Funct. Mater. 32, 2204106 (2022). https://doi.org/10.1002/adfm.202204106

    Article  CAS  Google Scholar 

  5. W. Lin, B. Zhang, K. Liu, J. Zhang, J. Wang, G. Ma, Chem. Eur. J. 28, e202201169 (2022). https://doi.org/10.1002/chem.202201169

    Article  CAS  PubMed  Google Scholar 

  6. S.S. Kalanur, R. Singh, H. Seo, Appl. Catal. B Environ. 295, 120269 (2021). https://doi.org/10.1016/j.apcatb.2021.120269

    Article  CAS  Google Scholar 

  7. Y. Kawai, K. Nagai, T. Abe, RSC Adv. 7, 34694–34698 (2017). https://doi.org/10.1039/C7RA05272C

    Article  CAS  Google Scholar 

  8. X. Liu, F. Wang, Q. Wang, Phys. Chem. Chem. Phys. 14, 7894–7911 (2012). https://doi.org/10.1039/C2CP40976C

    Article  CAS  PubMed  Google Scholar 

  9. C.A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, A. Tacca, Chem. Soc. Rev. 42, 2228–2246 (2013). https://doi.org/10.1039/C2CS35373C

    Article  CAS  PubMed  Google Scholar 

  10. K. Jakubow-Piotrowska, D. Kurzydlowski, P. Wrobel, J. Augustynski, A.C.S. Phys, Chem. Au 2, 299–304 (2022). https://doi.org/10.1021/acsphyschemau.2c00009

    Article  CAS  Google Scholar 

  11. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746–750 (2011). https://doi.org/10.1126/science.1200448

  12. J. Yan, T. Wang, G. Wu, W. Dai, N. Guan, L. Li, J. Gong, Adv. Mater. 27, 1580–1586 (2015). https://doi.org/10.1002/adma.201404792

    Article  CAS  PubMed  Google Scholar 

  13. A.V. Salkar, A.P. Naik, S.V. Bhosale, P.P. Morajkar, ACS Appl. Mater. Interfaces 13, 1288–1300 (2021). https://doi.org/10.1021/acsami.0c21105

    Article  CAS  PubMed  Google Scholar 

  14. B.-R. Koo, K.-H. Kim, H.-J. Ahn, Appl. Surf. Sci. 453, 238–244 (2018). https://doi.org/10.1016/j.apsusc.2018.05.094

    Article  CAS  Google Scholar 

  15. S.S. Kalanur, I.H. Yoo, I.S. Cho, H. Seo. Electrochim. Acta. 296, 517–527 (2019). https://doi.org/10.1016/j.electacta.2018.11.061

  16. S. Chandrasekaran, P. Zhang, F. Peng, C. Bowen, J. Huo, L. Deng, J. Mater. Chem. A 7, 6161–6172 (2019). https://doi.org/10.1039/C8TA12238E

    Article  CAS  Google Scholar 

  17. H. Jiang, W. Chen, X. Wang, H.-L. Ma, Y. Li, J. Tang, Appl. Surf. Sci. 615, 156321 (2023). https://doi.org/10.1016/j.apsusc.2022.156321

    Article  CAS  Google Scholar 

  18. J.M. Jiménez, G.A. Zickler, G.J. Redhammer, T. Berger, Appl. Catal. A: Gen. 658, 119163 (2023). https://doi.org/10.1016/j.apcata.2023.119163

  19. Y. Li, Z. Tang, J. Zhang, Z. Zhang, J. Phys. Chem. C 120, 9750–9763 (2016). https://doi.org/10.1021/acs.jpcc.6b00457

    Article  CAS  Google Scholar 

  20. A. Al Mohammad, M. Gillet, Thin Solid Films, 408, 302–309 (2002). https://doi.org/10.1016/S0040-6090(02)00090-1

  21. B. Ding, H. Qian, C. Han, J. Zhang, S. Lindquist, B. Wei, Z. Tang, J. Phys. Chem. C 118, 25633–25642 (2014). https://doi.org/10.1021/jp505513c

    Article  CAS  Google Scholar 

  22. T. Zhang, J. Liu, K. Zhu, Y. Hu, R. Liu, J. Chen, C. Jiang, J. Chen, Mater. Sci. & Eng. B 298, 116847 (2023). https://doi.org/10.1016/j.mseb.2023.116847

    Article  CAS  Google Scholar 

  23. H. Zhang, J. Yang, D. Li, W. Guo, Q. Qin, L. Zhu, W. Zheng, Appl. Sur. Sci. 305, 274–280 (2014). https://doi.org/10.1016/j.apsusc.2014.03.061

    Article  CAS  Google Scholar 

  24. N. Kangkun, N. Kiama, N. Saito, C. Ponchio, Optik 198, 163235 (2019). https://doi.org/10.1016/j.ijleo.2019.163235

    Article  CAS  Google Scholar 

  25. M.M. Khan, S. Kumar, T. Ahamad, A.N. Alhazaa, J. Alloy. Compd. 743, 485–493 (2018). https://doi.org/10.1016/j.jallcom.2018.01.343

  26. ICSD #014332

  27. Y.S. Zou, Y.C. Zhang, D. Lou, H.P. Wang, L. Gu, Y.H. Dong, K. Dou, X.F. Song, H.B. Zeng, J. Alloys Comp. 583, 465–470 (2014). https://doi.org/10.1016/j.jallcom.2013.08.166

    Article  CAS  Google Scholar 

  28. G. Wang, Y. Ling, Y. Li, Nanoscale 4, 6682–6691 (2012). https://doi.org/10.1039/C2NR32222F

    Article  CAS  PubMed  Google Scholar 

  29. J.Y. Gan, X.H. Lu, Y.X. Tong, Nanoscale 6, 7142–7164 (2014). https://doi.org/10.1039/C4NR01181C

    Article  CAS  PubMed  Google Scholar 

  30. M.N. Huda, Y. Yan, C.-Y. Moon, S.-H. Wei, M.M. Al-Jassim, Phys. Rev. B 77, 195102 (2008). https://doi.org/10.1103/PhysRevB.77.195102

    Article  CAS  Google Scholar 

  31. S.S. Kalanur, L.T. Duy, H. Seo, Top. Catal. 61, 1043–1076 (2018). https://doi.org/10.1007/s11244-018-0950-1

    Article  CAS  Google Scholar 

  32. G.W. Zheng, J.S. Wang, H. Liu, V. Murugadoss, G.N. Zu, H.B. Che, C. Lai, H.Y. Li, T. Ding, Q. Gao, Z.H. Guo, Nanoscale 11, 18968–18994 (2019). https://doi.org/10.1039/C9NR03474A

    Article  CAS  PubMed  Google Scholar 

  33. H. Tsuchikado, M. Chen, G. Guan, T. Abe, J. Appl. Electrochem. 53, 1137–1146 (2023). https://doi.org/10.1007/s10800-022-01838-z

    Article  CAS  Google Scholar 

  34. T. Cai, W. Zeng, Y. Liu, L. Wang, D. Wanyue, H. Chen, X. Xia, Appl. Catal. B Environ. 263, 118327 (2020). https://doi.org/10.1016/j.apcatb.2019.118327

    Article  CAS  Google Scholar 

  35. X. Hao, Y. Hu, Y. Cui, J. Zhou, Y. Wang, Z. Zou, Appl. Catal. B Environ. 244, 694–703 (2019). https://doi.org/10.1016/j.apcatb.2018.12.006

    Article  CAS  Google Scholar 

  36. T. Jin, P. Diao, Q. Wu, D. Xu, D. Hu, Y. Xie, M. Zhang, Appl. Catal. B Environ. 148–149, 304–310 (2014). https://doi.org/10.1016/j.apcatb.2013.10.052

    Article  CAS  Google Scholar 

  37. C. Shao, A.S. Malik, J. Han, D. Li, M. Dupuis, X. Zong, C. Li, Nano Energy 77, 105190 (2020). https://doi.org/10.1016/j.nanoen.2020.105190

    Article  CAS  Google Scholar 

  38. J. Zhang, J.P. Tu, X.H. Xia, Y. Qiao, Y. Lu, Sol. Energy Mater. Sol. Cells 93, 1840–1845 (2009). https://doi.org/10.1016/j.solmat.2009.06.025

    Article  CAS  Google Scholar 

  39. R. Zhang, F. Ning, S. Xu, L. Zhou, M. Shao, M. Wei, Electrochim. Acta 274, 217–223 (2018). https://doi.org/10.1016/j.electacta.2018.04.109

    Article  CAS  Google Scholar 

  40. X. An, J.C. Yu, Y. Wang, Y. Hu, X. Yu, G. Zhang, J. Mater. Chem. 22, 8525–8531 (2012). https://doi.org/10.1039/C2JM16709C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Waka Nagano (Iwate University) for assisting with XPS measurements.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

T.A.: Supervision and writing-original draft; H.T.: Investigation and formal analysis; M.C.: Investigation and writing-review and editing; T.I.: Resources, investigation, and writing-review and editing; G.G.: Resources and writing-review and editing; A.A.: Resources and writing-review and editing.

Corresponding author

Correspondence to Toshiyuki Abe.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Toshiyuki Abe and Hideya Tsuchikado. These two authors contributed equally to this work

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2.02 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, T., Tsuchikado, H., Chisaka, M. et al. Enhanced Photoanodic Activity and Outermost Surface Crystallinity of Tungsten Oxide via High-temperature Sintering. Electrocatalysis 15, 120–127 (2024). https://doi.org/10.1007/s12678-023-00859-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00859-2

Keywords

Navigation