Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T01:03:35.125Z Has data issue: false hasContentIssue false

Diversity analyses of chickpea (Cicer arietinum L.) through agro-morphological traits

Published online by Cambridge University Press:  20 December 2023

Nasser Eddine Dehbaoui*
Affiliation:
Laboratoire de recherche ERP, Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre. Université Djilali Bounaama de Khemis Miliana, Route Theniet El Had, Soufay 44225 Khemis Miliana, Algeria
Laurent Gentzbittel
Affiliation:
Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Avenue de l'Agrobiopole BP 32607, Auzeville-Tolosane, F-31326, Castanet-Tolosan, France
Jean Jacques Drevon
Affiliation:
Université de Montepplier, UMR Ecologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, INRAE-IRD-CIRAD-SupAgro. Place Pierre Viala, 34060 Montpellier, France
Mohamed Lazali
Affiliation:
Laboratoire de recherche ERP, Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre. Université Djilali Bounaama de Khemis Miliana, Route Theniet El Had, Soufay 44225 Khemis Miliana, Algeria
*
Corresponding author: Nasser Eddine Dehbaoui; Email: dehbaouinassereddine@gmail.com

Abstract

The limited genetic resource of chickpea (Cicer arietinum L.) is one of the most critical issue impeding its improvement and production. Collection and characterization of chickpea for agronomic traits is prerequisite to build a successful breeding programme through expanding chickpea's genepool to fulfil the needs of farmers and breeders, such as grain size and yield which supply food to a world rising population. To reach such an objective, numerous collection missions were carried out in Algeria, covering the northern agro-ecological environments, this allows us to gather 56 national and international genotypes that report a phenotypic variability and may provide a valuable diversity of useful features. Characterization experiments of 19 agro-morphological traits were set up at the Technical Institute of Field Crops over two successive seasons 2020 and 2021. All traits were statistically significant and the cluster analysis classified the genotypes into three major group, where local and improved accessions revealed an interesting outcome in terms of seed yield and resistance to Ascochyta blight. In general, the current study's findings clearly demonstrated that plant and seed morphological characteristics could be used to distinguish and identify chickpea genotypes. More often, it might participate as a source of variation in breeding programmes to meet the desirable improvement targets.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharjee, S and Sarmah, BK (2013) Biotechnologically generating ‘super chickpea’ for food and nutritional security. Plant Science 207, 108116.CrossRefGoogle ScholarPubMed
Agarwal, G, Jhanwar, S, Priya, P, Singh, VK, Saxena, MS, Parida, SK, Garg, R, Tyagi, AK and Jain, M (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLOS one 7, e52443.CrossRefGoogle ScholarPubMed
Ahmad, F, Gaur, PM and Croser, J (2005) Chickpea (Cicer arietinum L.). Genetic resources, chromosome engineering and crop improvement-grain legumes 1, 187217.CrossRefGoogle Scholar
Anbessa, Y, Warkentin, T, Bueckert, R and Vandenberg, A (2007) Short internode, double podding and early flowering effects on maturity and other agronomic characters in chickpea. Field Crops Research 102, 4350.CrossRefGoogle Scholar
Bayahi, K and Rezgui, S (2015) Agro-morphological characterisation and genetic study of new improved lines and cultivars of chickpea (Cicer arietinum L.). Journal of Plant Breeding and Genetics 3, 5965.Google Scholar
Bicer, BT, Kalender, AN and Sakar, D (2004) The effect of irrigation on spring-sown chickpea. Journal of Agronomy 3, 154158.CrossRefGoogle Scholar
Biswal, M, Solanki, RS, Prajapat, SS, Shiv, RK and Babbar, A (2021) The exploration of varietal characterisation of chickpea (Cicer arietinum L.) genotypes based on morphological markers. The Pharma Innovation Journal 10, 24662473.Google Scholar
Chauhan, YS, Ryan, M, Chandra, S and Sadras, VO (2019) Accounting for soil moisture improves prediction of flowering time in chickpea and wheat. Scientific Reports 9, 111.CrossRefGoogle ScholarPubMed
Choudhary, P, Khanna, SM, Jain, PK, Bharadwaj, C, Kumar, J, Lakhera, PC and Srinivasan, R (2013) Molecular characterisation of primary gene pool of chickpea based on ISSR markers. Biochemical Genetics 51, 306322.CrossRefGoogle ScholarPubMed
Davies, S, Turner, N, Palta, J, Siddique, K and Plummer, J (2000) Remobilization of carbon and nitrogen supports seed filling in chickpea subjected to water deficit. Australian Journal of Agricultural Research 51, 855866.CrossRefGoogle Scholar
Devasirvatham, V (2013) The basis of chickpea heat tolerance under semi-arid environments (Master's Thesis). University of Sydney.Google Scholar
Gaur, PM, Samineni, S, Tripathi, S, Varshney, RK and Gowda, C (2015) Allelic relationships of flowering time genes in chickpea. Euphytica 203, 295308.CrossRefGoogle Scholar
Ghassemi-Golezani, K and Ghassemi, S (2012) Effects of water supply on seed development and quality of chickpea cultivars. Plant Breeding and Seed Science 67, 3744.CrossRefGoogle Scholar
Hasan, MT and Deb, AC (2013) Inheritance study of flower color in chickpea (Cicer arietinum L.). Indian Journal of Agricultural Research 47, 445448.Google Scholar
Hossain, S, Ford, R, McNeil, D, Pittock, C and Panozzo, J (2010) Inheritance of seed size in chickpea (Cicer arietinum L.) and identification of QTL based on 100–seed weight and seed size index. Australian Journal of Crop Science 4, 126135.Google Scholar
Husson, F and Pagès, SJ (2011) Exploratory Multivariate Analysis by Example Using R. New York: CRC Press Boca Raton.Google Scholar
Husson, F, Josse, J, Le, S, Mazet, J and Husson, MF (2016) Package ‘FactoMineR’. An R package 96:698.Google Scholar
ITGC (2021) Institut technique des grandes cultures. La récolte du Pois Chiche. Available at http://www.itgc.dz/Google Scholar
Kassambara, A (2017) Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra, volume 2. Sthda.Google Scholar
Kumar, J and Abbo, S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments.CrossRefGoogle Scholar
Laumont, P and Chevassus, A (1956) Note sur l'amélioration du pois chiche en Algérie.Google Scholar
Miao, M, Zhang, T and Jiang, B (2009) Characterisations of kabuli and desi chickpea starches cultivated in China. Food Chemistry 113, 10251032.CrossRefGoogle Scholar
Nguyen, T, Taylor, P, Redden, R and Ford, R (2004) Genetic diversity estimates in Cicer using AFLP analysis. Plant Breeding 123, 173179.CrossRefGoogle Scholar
Pavan, S, Lotti, C, Marcotrigiano, AR, Mazzeo, R, Bardaro, N, Bracuto, V, Ricciardi, F, Taranto, F, D'Agostino, N, Schiavulli, A and De Giovanni, C (2017) A distinct genetic cluster in cultivated chickpea as revealed by genome wide marker discovery and genotyping. The Plant Genome 10, 2016–2011.CrossRefGoogle ScholarPubMed
Pundir, R, Reddy, K and Mengesha, M (1992) Pod volume and pod filling as useful traits of chickpeas. International Chickpea Newsletter 27, 2728.Google Scholar
Rao, VR and Hodgkin, T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture 68, 119.Google Scholar
Rao, NK, Reddy, L and Bramel, P (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genetic Resources and Crop Evolution 50, 707721.Google Scholar
R Core Team (2021) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
Roorkiwal, M, Von Wettberg, EJ, Upadhyaya, HD, Warschefsky, E, Rathore, A and Varshney, RK (2014) Exploring germplasm diversity to understand the domestication process in Cicer spp using SNP and DArT markers. PLOS One 9, e102016.CrossRefGoogle ScholarPubMed
Sharifi, P, Astereki, H and Pouresmael, M (2018) Evaluation of variations in chickpea (Cicer arietinum L.) yield and yield components by multivariate technique. Annals of Agrarian Science 16, 136142.CrossRefGoogle Scholar
Singh, KB (1997) Chickpea (Cicer arietinum L.). Field Crops Research 53, 161170.CrossRefGoogle Scholar
Singh, V and Singh, F (1989) Selection criteria for yield in chickpea (Cicer arietinum L.). Indian Journal of Agricultural Science 53, 161170.Google Scholar
Singh, KB and Reddy, MV (1996) Improving chickpea yield by incorporating resistance to ascochyta blight. Theoretical and Applied Genetics 92, 509515.CrossRefGoogle ScholarPubMed
Singh, K, Hawtin, G, Nene, Y and Reddy, M (1981) Resistance in chickpeas to Ascochyta rabiei. Plant Disease 65, 586587.CrossRefGoogle Scholar
Singh, K, Bejiga, G and Malhotra, R (1990) Associations of some characters with seed yield in chickpea collections. Euphytica 49, 8388.CrossRefGoogle Scholar
Singh, K, Holly, L and Bejiga, G (1991) A catalog of kabuli chickpea germplasm.Google Scholar
Singh, M, Bisht, IS and Dutta, M (2014) Broadening the Genetic Base of Grain Legumes. India: Springer, pp. 5173.CrossRefGoogle Scholar
Talebi, R, Fayaz, F and Jelodar, NAB (2007) Correlation and path coefficient analysis of yield and yield components of chickpea (Cicer arietinum L.) under dry land condition in the west of Iran. Asian Journal of Plant Sciences 6, 11511154.Google Scholar
Toker, C and Ilhan-Cagirgan, M (2004) The use of phenotypic correlations and factor analysis in determining characters for grain yield selection in chickpea (Cicer arietinum L.). Hereditas 140, 226228.CrossRefGoogle ScholarPubMed
Upadhyaya, HD, Dwivedi, SL, Baum, M, Varshney, RK, Udupa, SM, Gowda, CL, Hoisington, D and Singh, S (2008) Genetic structure, diversity and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biology 8, 106.CrossRefGoogle ScholarPubMed
Supplementary material: File

Dehbaoui et al. supplementary material 1

Dehbaoui et al. supplementary material
Download Dehbaoui et al. supplementary material 1(File)
File 681.7 KB
Supplementary material: File

Dehbaoui et al. supplementary material 2

Dehbaoui et al. supplementary material
Download Dehbaoui et al. supplementary material 2(File)
File 542.3 KB
Supplementary material: File

Dehbaoui et al. supplementary material 3

Dehbaoui et al. supplementary material
Download Dehbaoui et al. supplementary material 3(File)
File 18.6 KB