Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T11:13:22.471Z Has data issue: false hasContentIssue false

Secondary uranyl arsenates–phosphates and Sb–Bi-rich minerals of the segnitite–philipsbornite series in the oxidation zone at the Prakovce-Zimná Voda REE–U–Au quartz-vein mineralisation, Western Carpathians, Slovakia

Published online by Cambridge University Press:  04 October 2023

Martin Ondrejka*
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
Štefan Ferenc
Affiliation:
Department of Geography and Geology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia
Juraj Majzlan
Affiliation:
Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, 07749 Jena, Germany
Martin Števko
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9, Czech Republic
Richard Kopáčik
Affiliation:
Department of Geography and Geology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia
Bronislava Voleková
Affiliation:
Slovak National Museum, Natural History Museum, Vajanského nábrežie 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
Stanislava Milovská
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 11, Banská Bystrica, Slovakia
Jörg Göttlicher
Affiliation:
Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe D-76021, Germany
Ralph Steininger
Affiliation:
Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe D-76021, Germany
Tomáš Mikuš
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 11, Banská Bystrica, Slovakia
Pavel Uher
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
Adrián Biroň
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 11, Banská Bystrica, Slovakia
Jiří Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9, Czech Republic
Alexandra Molnárová
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
*
Corresponding author: Martin Ondrejka; Email: martin.ondrejka@uniba.sk

Abstract

This work is an investigation of the assemblages of supergene minerals occurring in hydrothermal REE–U–Au quartz-vein mineralisation at the Prakovce-Zimná Voda site, Slovakia. Heterogeneous uranyl arsenates and minor phosphates of the autunite group (nováčekite, kahlerite, threadgoldite, autunite, arsenuranospathite and chistyakovaite) together with scorodite and Sb–Bi-rich philipsbornite–segnitite-series minerals formed by oxidising fluids during decomposition and leaching of primary hypogene uraninite, brannerite and base-metal sulfides and sulfosalts. A progressive change of pH from acidic to near-neutral due to the gradual consumption of sulfides resulted in the formation of late phosphuranylite, pharmacosiderite and arseniosiderite. Goethite and other Fe oxides represent the latest hydrous ferric mineral phases and were formed after most of the As was already fixed in Fe arsenates. Antimony and Bi were taken up only into philipsbornite–segnitite and suggest unusual conditions during this process. X-ray absorption spectroscopy indicates that Sb in the philipsbornite–segnitite is fully oxidised (0.1–0.4 apfu Sb5+, octahedral coordination on the G site). Pentavalent Sb together with the presence of ferric oxides and arsenates and uranyl minerals suggest oxidative conditions during weathering. This study also indicates that hydrous ferric arsenates are dominant and stable secondary minerals in a supergene environment in a quartz vein rich in Fe and As accompanied by elevated concentrations of U, Pb, Sb, Bi, S, P, Ca and Ba under oxidising conditions.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Adlakha, E.E. and Hattori, K. (2015) Compositional variation and timing of aluminum phosphate-sulfate minerals in the basement rocks along the P2 fault and in association with the McArthur River uranium deposit, Athabasca Basin, Saskatchewan, Canada. American Mineralogist, 100, 13861399.CrossRefGoogle Scholar
Bajaník, Š., Ivanička, J., Mello, J., Reichwalder, P., Pristaš, J., Snopko, L., Vozár, J., and Vozárová, A. (1984) Geological map of the Slovenské Rudohorie Mts.—Eastern part, 1: 50 000, 1st ed. State Geological Institute of D.Štúr, Bratislava, Czechoslovakia [in Slovak].Google Scholar
Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74, 919927.CrossRefGoogle Scholar
Beaufort, D., Patrier, P., Laverret, E., Bruneton, P. and Mondy, J. (2005) Clay alteration associated with Proterozoic unconformity-type uranium deposits in the East Alligator Rivers uranium field, Northern Territory, Australia. Economic Geology, 100, 515536.CrossRefGoogle Scholar
Belova, L.N. (1975) Oxidation Zones of Hydrothermal Uranium Deposits. Moscow, Nedra, pp 1158 [in Russian].Google Scholar
Belova, L.N. (2000) Formation conditions of oxidation zones of uranium deposits and uranium mineral accumulations in the hypergenesis zone. Geology of Ore Deposits, 42, 103110Google Scholar
Birch, W.D., Pring, A. and Gatehouse, B.M. (1992) Segnitite, PbFe3H(AsO4)2(OH)6, a new mineral in the lusungite group from Broken Hill, New South Wales, Australia. American Mineralogist, 77, 656659.Google Scholar
Cheng, H., Hu, Y., Luo, J., Xu, B. and Zhao, J., (2009) Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials, 165, 1326.CrossRefGoogle ScholarPubMed
Clark, A.M., Couper, A.G., Embrez, P.G. and Fejer, E.E. (1986) Waylandite: new data, from an occurrence in Cornwall, with a note on ‘agnesite’. Mineralogical Magazine, 50, 731733.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (2012) Refinement of the crystal structure of zoned philipsbornite-hidalgoite from the Tsumeb mine, Namibia, and hydrogen bonding in the D2+G3+3(T5+O4)(TO3OH)(OH)6 alunite structures. Mineralogical Magazine, 76, 839849.CrossRefGoogle Scholar
Culka, A., Kindlová, H., Drahota, P. and Jehlička, J. (2016) Raman spectroscopic identification of arsenate minerals in situ at outcrops with handheld (532nm, 785nm) instruments, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 154, 193199.CrossRefGoogle Scholar
Das, B. (2019) Theoretical study of formation of secondary arsenic minerals: scorodite and pharmacosiderite. ACS Earth and Space Chemistry, 3, 192201.CrossRefGoogle Scholar
Das, S. and Hendry, M.J. (2011) Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chemical Geology, 290, 101108.CrossRefGoogle Scholar
David, J., Jahnsa, J., Novák, F. and Prachař, I. (1990) Philipsbornite from the Sn–W deposit Cínovec in Krušné hory Mts. (Czechoslovakia). Vestnik Ustredniho Ustavu Geologickeho, 65, 367369.Google Scholar
De Faria, D.L.A., Venâncio Silva, S. and De Oliveira, M.T. (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 28, 873878.3.0.CO;2-B>CrossRefGoogle Scholar
Desborough, G.A., Smith, K.S., Lowers, H.A., Swayze, G.A., Hammarstrom, J.M., Diehl, S.F., Leinz, R.W. and Driscoll, R.L. (2010) Mineralogical and chemical characteristics of some natural jarosites. Geochimica et Cosmochimica Acta, 74, 10411056.CrossRefGoogle Scholar
Dill, H.G. (2001) The geology of aluminum phosphates and sulphates of the alunite group minerals: a review. Earth Science Reviews, 53, 3593.CrossRefGoogle Scholar
Donát, A., Miháľ, F. and Novotný, L. (2000) Geological-Exploration Works on the Au in Lower Paleozoic of Spišsko-Gemerské Rudohorie Mts. Unpublished Report, State Geological Institute of D. Štúr, Bratislava, pp 1209 [in Slovak].Google Scholar
Drahota, P. and Filippi, M. (2009) Secondary As minerals in the environment: a review. Environment International, 35, 12431255CrossRefGoogle ScholarPubMed
Drahota, P., Rohovec, J., Filippi, M., Mihaljevič, M., Rychlovský, P., Červený, V. and Pertold, Z. (2009) Mineralogical and geochemical controls on arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Science of The Total Environment, 407, 3372–84.CrossRefGoogle Scholar
Dutrizac, J.E. and Jambor, J.L. (2000) Jarosites and their application in hydrometallurgy. Pp. 405452 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors) Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Washington DC.Google Scholar
Ferenc, Š., Biroň, A., Mikuš, M., Spišiak, J. and Budzák, Š. (2018) Initial replacement stage of primary uranium (UIV) minerals by supergene alteration: association of uranyl-oxide hydroxy–hydrates and “calciolepersonnite” from the Krátka Dolina Valley (Gemerská Poloma, Gemeric Unit, Western Carpathians, Slovakia). Journal of Geosciences, 63, 277291.CrossRefGoogle Scholar
Ferenc, Š., Mikuš, T., Kopáčik, R., Vlasáč, J. and Hoppanová, E. (2022) Cu-(U) mineralisation in the copper sandstones at Šafárka occurrence near Novoveská Huta (Spišská Nová Ves), Spišsko-gemerské Rudohorie Mts., Western Carpathians, Gemeric Unit, eastern Slovakia. Acta Geologica Slovaca, 14, 87101.Google Scholar
Filippi, M., Doušová, B. and Machovič, V. (2007) Arsenic in contaminated soils and anthropogenic deposits at the Mokrsko, Roudný, and Kašperské Hory gold deposits, Bohemian Massif CZ. Geoderma, 139, 154170.CrossRefGoogle Scholar
Frost, R.L., Weier, M.L., Martens, W. and Mills, S. (2005) Molecular structure of segnitite: A Raman spectroscopic study. Journal of Molecular Structure, 752, 178185.CrossRefGoogle Scholar
Frost, R.L., Bahfenne, S., Čejka, J., Sejkora, J., Plášil, J., Palmer, S.J., Keeffe, E.C. and Němec, I. (2011) Dussertite BaFe3+3(AsO4)2(OH)5 – a Raman spectroscopic study of a hydroxy-arsenate mineral. Journal of Raman Spectroscopy, 42, 5661.CrossRefGoogle Scholar
Frost, R.L., Xi, Y., Pogson, R.E. and Scholz, R. (2013) A vibrational spectroscopic study of philipsbornite PbAl3(AsO4)2(OH)5⋅H2O-molecular structural implications and relationship to the crandallite subgroup arsenates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 257261.CrossRefGoogle Scholar
Gaboreau, S., Beaufort, D., Viellard, P. and Patrier, P. (2005) Aluminum phosphate-sulfate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator River uranium field, Northern Territories, Australia. The Canadian Mineralogist, 43, 813827.CrossRefGoogle Scholar
Gaboreau, S., Cuney, M., Quirt, D., Beaufort, D., Patrier, P. and Mathieu, R. (2007) Significance of aluminum phosphate-sulfate minerals associated with U unconformity-type deposits: The Athabasca basin, Canada. American Mineralogist, 92, 267280.CrossRefGoogle Scholar
Göb, S., Gühring, J-E, Bau, M. and Markl, G. (2013) Remobilization of U and REE and the formation of secondary minerals in oxidized U deposits. American Mineralogist, 98, 530548.CrossRefGoogle Scholar
Golebiowska, B., Włodek, A., Pieczka, A., Borkiewicz, O. and Polak, M (2016) The philipsbornite-segnitite solid-solution series from Rędziny, eastern metamorphic cover of the Karkonosze granite (SW Poland). Annales Societatis Geologorum Poloniae, 86, 7383.Google Scholar
Herrmann, J., Voegelin, A, Palatinus, L., Mangold, S. and Majzlan, J. (2018) Secondary Fe–As–Tl mineralization in soils near Buus in the Swiss Jura Mountains. European Journal of Mineralogy, 30, 887898.CrossRefGoogle Scholar
Kloprogge, J.T. and Wood, B.J. (2017) X-ray Photoelectron Spectroscopic and Raman microscopic investigation of the variscite group minerals: Variscite, strengite, scorodite and mansfieldite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 163172.CrossRefGoogle ScholarPubMed
Kobulský, J., Gazdačko, Ľ. and Grecula, P. (2011) Raw materials. Pp. 1308 in: Explanations to the geological map of the Spiš-Gemer Ore Mountains (Grecula, P, Kobulský, J, editors). The Dionýz Štúr State Geological Institute, Bratislava [in Slovak].Google Scholar
Kohút, M., Trubač, J., Novotný, L., Ackerman, L., Demko, R., Bartalský, B. and Erban, V. (2013) Geology and Re–Os molybdenite geochronology of the Kurišková U–Mo deposit (Western Carpathians, Slovakia). Journal of Geosciences, 58, 271282.CrossRefGoogle Scholar
Kolitsch, U., Slade, P.G., Tiekink, E.R.T. and Pring, A. (1999) The structure of antimonian dussertite and the role of antimony in oxysalt minerals. Mineralogical Magazine, 63, 1726.CrossRefGoogle Scholar
Kossoff, D., Welch, M.D. and Hudson-Edwards, K.A. (2015) Scorodite precipitation in the presence of antimony. Chemical Geology, 406, 19.CrossRefGoogle Scholar
Krivovichev, S.V. and Plášil, J. (2013) Mineralogy and crystallography of uranium. Pp. 15119 in: Uranium: From Cradle to Grave (Burns, PC, Sigmon, GE, editors). Mineralogical Association of Canada Short Courses, 43.Google Scholar
Kroumova, E., Aroyo, M.I., Perez-Mato, J.M., Kirov, A., Capillas, C., Ivantchev, S. and Wondratschek, H. (2003) Bilbao Crystallographic Server: useful databases and tools for phase transitions studies. Phase Transitions, 76, 155170.CrossRefGoogle Scholar
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The power of databases: the RRUFF project. Pp. 130 in: Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R.M., editors). De Gruyter, Berlin, Germany.Google Scholar
Lalinská-Voleková, B., Majzlan, J., Klimko, T., Chovan, M., Kučerová, G., Michňová, J., Hovorič, R., Göttlicher, J. and Steininger, R. (2012) Mineralogy of weathering products of Fe–As–Sb mine wastes and soils at several Sb deposits in Slovakia. The Canadian Mineralogist, 50, 481500.CrossRefGoogle Scholar
Lalinská-Voleková, B., Majerová, H., Kautmanová, I., Brachtýr, O., Szabóová, D., Arendt, D., Brčeková, J. and Šottník, P. (2022) Hydrous ferric oxides (HFO's) precipitated from contaminated waters at several abandoned Sb deposits – Interdisciplinary assessment. Science of the Total Environment, 821, 153248.CrossRefGoogle Scholar
Leverett, P., McKinnon, A.R. and Williams, P.A. (2003) Mineralogy of the oxidized zone at the New Cobar ore body. Pp 267–270 in: Advances in Regolith (Roach, I.C., editor). CRC LEME Regional Regolith Symposia, Adelaide, Australia.Google Scholar
Majzlan, J., Lalinská, B., Chovan, M., Jurkovič, Ľ., Milovská, S. and Göttlicher, J. (2007) The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia). Geochimica et Cosmochimica Acta, 71, 42064220.CrossRefGoogle Scholar
Majzlan, J., Lalinská, B., Chovan, M., Blaß, U., Brecht, B., Göttlicher, J., Steininger, R., Hug, K., Ziegler, S. and Gescher, J. (2011) A mineralogical, geochemical, and microbiogical assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. American Mineralogist, 96, 113.CrossRefGoogle Scholar
Majzlan, J., Drahota, P., Filippi, M., Grevel, K.-D., Kahl, W.-A., Plášil, J., Boerio-Goates, J. and Woodfield, B.F. (2012) Thermodynamic properties of scorodite and parascorodite (FeAsO4⋅2H2O), kaňkite (FeAsO4⋅3.5H2O), and FeAsO4. Hydrometallurgy, 117–118, 4756.CrossRefGoogle Scholar
Majzlan, J., Haase, P., Plášil, J. and Dachs, E. (2019) Synthesis and stability of some members of the pharmacosiderite group, AFe4(OH)4(AsO4)3nH2O (A = K, Na, 0.5Ba, 0.5Sr). The Canadian Mineralogist, 57, 663675.CrossRefGoogle Scholar
Mills, S.J. (2007) The Crystal Chemistry and Geochronology of Minerals From Broken Hill. Unpublished Ph.D. thesis, University of Melbourne, Australia.Google Scholar
Mills, S.J., Kampf, A.R., Raudsepp, M. and Birch, W.D. (2010) The crystal structure of waylandite from Wheal Remfry, Cornwall, United Kingdom. Mineralogy and Petrology, 100, 249253.CrossRefGoogle Scholar
Mills, S.J., Etschmann, B., Kampf, A.R., Poirier, G. and Newville, M. (2014) Sb5+ and Sb3+ substitution in segnitite: A new sink for As and Sb in the environment and implications for acid mine drainage. American Mineralogist, 99, 13551359.CrossRefGoogle Scholar
Moura, M.A., Botelho, N.F. and de Mendonça F., Carvalho (2007) The indium-rich sulfides and rare arsenates of the Sn-In-mineralized Mangabeira A-type granite, Central Brazil. The Canadian Mineralogist, 45, 485496.CrossRefGoogle Scholar
Müller, K., Ciminelli, V.S.T., Dantas, M.S.S. and Willscher, S. (2010) A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Research, 44, 56605672.CrossRefGoogle Scholar
Myneni, S.C.B., Traina, S.J., Waychunas, G.A. and Logan, T.J. (1998) Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochimica Cosmochimica Acta, 62, 32853300.CrossRefGoogle Scholar
Novotný, L. and Čížek, P. (1979) New occurrence of uranium– gold mineralization to the south of Prakovce in Spišsko-Gemerské Rudohorie Mts. Mineralia Slovaca, 11, 188190 [in Slovak].Google Scholar
Novotný, L., Háber, M., Križáni, I., Rojkovič, I. and Miháľ, F. (1999) Gold in the Early Paleozoic rocks in the central part of the Spišsko-Gemerské Rudohorie Mts. Mineralia Slovaca, 31, 211216 [in Slovak].Google Scholar
Ondrejka, M., Uher, P., Ferenc, Š., Majzlan, J., Pollok, K., Mikuš, T., Milovská, S., Molnárová, A., Škoda, R., Kopáčik, R., Kurylo, S. and Bačík, P. (2023a) Monazite-(Gd), a new Gd-dominant mineral of the monazite group from the Zimná Voda REE–U–Au quartz vein, Prakovce, Western Carpathians, Slovakia. Mineralogical Magazine, 87, 568574.CrossRefGoogle Scholar
Ondrejka, M., Uher, P., Ferenc, Š., Milovská, S., Mikuš, T., Molnárová, A., Škoda, R., Kopáčik, R. and Bačík, P. (2023b) Gadolinium-dominant monazite and xenotime: Selective hydrothermal enrichment of middle REE during low-temperature alteration of uraninite, brannerite, and fluorapatite (the Zimná Voda REE-U-Au quartz vein, Western Carpathians, Slovakia). American Mineralogist, 108, 754768.CrossRefGoogle Scholar
Paikaray, S. (2015) Arsenic geochemistry of acid mine drainage. Mine Water and the Environment, 34, 181196.CrossRefGoogle Scholar
Paktunc, D., Foster, A., Heald, S. and Laflamme, G. (2004) Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 68, 969–83.CrossRefGoogle Scholar
Paktunc, D., Majzlan, J., Huang, A., Thibault, Y., Johnson, M. and White, M.A. (2015) Synthesis, characterization, and thermodynamics of arsenates forming in the Ca-Fe(III)-As(V)-NO3 system: Implications for the stability of Ca-Fe arsenates. American Mineralogist, 100, 18031820.CrossRefGoogle Scholar
Pekov, I.V., Khanin, D.A., Yapaskurt, V.O., Pakunova, A.V. and Ekimenkova, I.A. (2016) Minerals of the beudantite–segnitite series from the oxidation zone of the Berezovskoe gold deposit, Middle Urals: chemical variations, behavior of admixtures, and antimonian varieties. Geology of Ore Deposits, 58, 600611.CrossRefGoogle Scholar
Plašienka, D., Grecula, P., Putiš, M., Kováč, M. and Hovorka, D. (1997) Evolution and structure of the Western Carpathians: an overview. Pp 124i in: Geological Evolution of the Western Carpathians (Grecula, P., Hovorka, D. and Putiš, M., editors). Mineralia Slovaca Monograph, Bratislava.Google Scholar
Plášil, J. (2014) Oxidation–hydration weathering of uraninite: the current state-of-knowledge, Journal of Geosciences, 59, 99114.CrossRefGoogle Scholar
Rattray, K.J., Taylor, M.R., Bevan, D.J.M. and Pring, A. (1996) Compositional segregation and solid solution in the lead-dominant alunite-type minerals from Broken Hill, N.S.W. Mineralogical Magazine, 60, 779785.CrossRefGoogle Scholar
Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.CrossRefGoogle ScholarPubMed
Rojkovič, I. (1997) Uranium Mineralization in Slovakia. Comenius University, Bratislava, pp. 1117.Google Scholar
Rojkovič, I. and Novotný, L. (1993) Uranium mineralization in Gemericum. Mineralia Slovaca, 25, 368370 [in Slovak].Google Scholar
Rojkovič, I., Háber, M. and Novotný, L. (1997) U–Au–Co– Bi–REE mineralization in the Gemeric Unit (Western Carpathians, Slovakia). Geologica Carpathica, 48, 303313Google Scholar
Scharm, B., Scharmová, M. and Kundrát, M. (1994) Crandalite group minerals in the uranium ore district of Northern Bohemia (Czech Republic). Věstník Českého Geologického Ústavu, 69, 7985.Google Scholar
Sejkora, J., Ondruš, P., Fikar, M., Veselovský, F., Mach, Z., Gabašová, A., Škoda, R. and Beran, P. (2006) Supergene minerals at the Huber stock and Schnod stock deposits, Krásno ore district, the Slavkovský les area, Czech Republic. Journal of Czech Geological Society, 51, 57101.Google Scholar
Sejkora, J., Škovíra, J., Čejka, J. and Plášil, J (2009) Cu-rich members of the beudantite–segnitite series from the Krupka ore district, the Krušné hory Mountains, Czech Republic. Journal of Geosciences, 54, 355371.Google Scholar
Sejkora, J., Plášil, J., Císařová, I., Škoda, R., Hloušek, J., Veselovský, F. and Jebavá, I. (2011) Interesting supergene Pb-rich mineral association from the Rovnost mining field, Jáchymov (St. Joachimsthal), Czech Republic. Journal of Geosciences, 56, 257271.Google Scholar
Sejkora, J., Pauliš, P., Urban, M., Dolníček, Z., Ulmanová, J. and Pour, O. (2021) Mineralogy of quartz veins of the tin deposit Hřebečná near Abertamy in Krušné hory Mountains (Czech Republic). Bulletin Mineralogie Petrologie 29, 131163 [in Czech with English abstract].CrossRefGoogle Scholar
Števko, M., Uher, P., Ondrejka, M., Ozdín, D. and Bačík, P. (2014) Quartz–apatite– REE phosphates–uraninite vein mineralization near Čučma (eastern Slovakia): A product of early Alpine hydrothermal activity in the Gemeric Superunit, Western Carpathians. Journal of Geosciences, 59, 209222.CrossRefGoogle Scholar
Števko, M., Sejkora, J. and Malíková, R. (2016) New data on supergene minerals from the Rainer mining field, Ľubietová - Podlipa deposit (Slovak Republic). Bulletin Mineralogie Petrologie 24, 112 [in Slovak with English abstract].Google Scholar
Uehara, S. and Shirose, Y. (2013) Namibite and hechtsbergite from the Nagatare mine, Fukuoka Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 108, 105110.CrossRefGoogle Scholar
Van Wambeke, L. (1975) La zaïrite, un nouveau minéral appartenant à la série de la crandallite. In: Bulletin de la Société française de Minéralogie et de Cristallographie, 98, 351353 [in French].Google Scholar
Varček, C. (1977) Some rare mineralization types in the Spišsko-Gemerské Rudohorie Mts. Pp. 9399 in: Ore-Forming Processes in the Western Carpathians (Háber, M., editor). Universitas Comeniana, Bratislava [in Slovak].Google Scholar
Villaseñor, G., Catlos, E.J., Broska, I., Kohút, M., Hraško, Ľ., Aguilera, K., Etzel, T.M., Kyle, R. and Stockli, D.F. (2021) Evidence for widespread mid-Permian magmatic activity related to rifting following the Variscan orogeny (Western Carpathians). Lithos, 390–391, 106083.Google Scholar
Von Knorring, O. and Mrose, M.E. (1963) Westgrenite [= bismutomicrolite] and waylandite, two new bismuth minerals from Uganda. Geological Society of America Special Paper, 73, 256A.Google Scholar
Walker, S.R., Jamieson, H.E., Lanzirotti, A., Andrade, C.F. and Hall, G.E.M. (2005). The speciation of arsenic in iron oxides in mine wastes from the Giant gold mine, NWT: application of synchrotron micro-XRD and micro-XANES at the grain scale. The Canadian Mineralogist 43, 12051224.CrossRefGoogle Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Welch, S.A., Christy, A.G., Kirste, D., Beavis, S.G. and Beavis, F. (2007) Jarosite dissolution I – trace cation flux in acid sulfate soils. Chemical Geology, 245, 183197.CrossRefGoogle Scholar
Welch, S.A., Kirste, D., Christy, A.G., Beavis, F.R. and Beavis, S.G. (2008) Jarosite dissolution II – reaction kinetics, stoichiometry and acid flux. Chemical Geology, 254, 7386.CrossRefGoogle Scholar
Welch, S.A., Christy, A.G., Isaacson, L. and Kirste, D. (2009) Mineralogical control of rare earth elements in acid sulfate soils. Geochimica et Cosmochimica Acta, 73, 4464.CrossRefGoogle Scholar
Zhang, J., Liang, X., Wang, F., Wang, H., Fan, Y., Ba, T. and Meng, X. (2023) CorelKit: An Extensible CorelDraw VBA Program for Geoscience Drawing. Journal of Earth Science, 34, 735757.CrossRefGoogle Scholar
Supplementary material: File

Ondrejka et al. supplementary material 1

Ondrejka et al. supplementary material
Download Ondrejka et al. supplementary material 1(File)
File 4.7 MB
Supplementary material: File

Ondrejka et al. supplementary material 2

Ondrejka et al. supplementary material
Download Ondrejka et al. supplementary material 2(File)
File 24.6 KB
Supplementary material: File

Ondrejka et al. supplementary material 3

Ondrejka et al. supplementary material
Download Ondrejka et al. supplementary material 3(File)
File 88.1 KB
Supplementary material: File

Ondrejka et al. supplementary material 4

Ondrejka et al. supplementary material
Download Ondrejka et al. supplementary material 4(File)
File 194.6 KB
Supplementary material: File

Ondrejka et al. supplementary material 5

Ondrejka et al. supplementary material
Download Ondrejka et al. supplementary material 5(File)
File 152.1 KB