Skip to main content
Log in

Patterns of evolution in MHC class II DQA and DQB exon 2 genes of Alpine mountain hares, Lepus timidus varronis, and sympatric and parapatric brown hares, L. europaeus, from Switzerland

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

In natural populations, hybridization is known to occur between a wide range of species. However, its evolutionary significance is less clear. Genes involved in fighting pathogens are considered excellent candidates for studying adaptive introgression, although both introgression and balancing selection can generate similar patterns of diversity and differentiation. Here, we compared DQA and DQB MHC class II and microsatellite allelic diversity of sympatric and parapatric mountain (Lepus timidus) and brown hare (L. europaeus) populations from Switzerland. We detected higher genetic diversity in brown hares compared to mountain hares at both MHC and microsatellite loci. We consider the observed patterns of microsatellite diversity both for L. europaeus and L. timidus as result of stochastic demographic processes while the pattern of MHC polymorphism of the studied hare populations can be explained by pathogen-driven selection. Rare bidirectional gene flow between both hare species seems to occur specifically for MHC alleles. However, the high number of shared alleles showing similar high frequency in both species suggests that reciprocally exchanged MHC alleles are being maintained via balancing selection. Adaptation to similar pathogen communities can also lead to parallel selection of MHC alleles. Positive selection, recombination and mutations have played different roles in shaping the patterns of MHC allelic diversity in and differentiation between both species. Results for the latter evolutionary forces do not show a better matching between the sympatric populations compared to the parapatric ones, suggesting a minor role of introgression for the observed evolutionary patterns of the studied hare species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves PC, Melo-Ferreira J, Freitas H, Boursot P (2008) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. Phil Trans R Soc B 363:2831–2839

    Article  PubMed  PubMed Central  Google Scholar 

  • Angerbjörn A, Flux JEC (1995) Lepus timidus. Mamm Species 495:1–11

    Article  Google Scholar 

  • Awadi A, Ben Slimen H, Smith S, Knauer F, Makni M, Suchentrunk F (2018) Positive selection and climatic effects on MHC class II gene diversity in hares (Lepus capensis) from a steep ecological gradient. Sci Rep 8:11514

    Article  PubMed  PubMed Central  Google Scholar 

  • Awadi A, Ben Slimen H, Schascl H, Knauer F, Suchentrunk F (2021) Positive selection on two mitochondrial coding genes and adaptation signals in hares (genus Lepus) from China. BMC Ecol Evol 21:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton NH (1979) Gene flow past a cline. Heredity 43(3):333–339

    Article  Google Scholar 

  • Belkhir K (2004) GENETIX V. 4.0, logiciel sous WindowsTM pour la ge´ne´tique des populations. Laboratoire Ge´nome, populations, interactions CNRS UMR 5000, Université De Montpellier II. Montpellier, France

    Google Scholar 

  • Ben Slimen H, Suchentrunk F, Stamatis C, Mamuris Z, Sert H, Alves PC, Kryger U, Shahin AB, Ben Ammar Elgaaied A (2008) Population genetics of cape and brown hares (Lepus capensis and L. Europaeus): a test of Petter´s hypothesis of conspecificity. Biochem Syst Ecol 36:22–39

    Article  CAS  Google Scholar 

  • Ben Slimen H, Awadi A, Gebremariam TZ, Knauer F, Suchentrunk F (2018) Positive selection on the mitochondrial ATP synthase 6 and the NADH dehydrogenase 2 genes across 22 hare species (genus Lepus). J Zoological Syst Evolutionary Res 56(3):428–433

    Article  Google Scholar 

  • Biedrzycka A, Sebastian A, Migalska M, Westerdahl H, Radwan J (2017) Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family: MHC class I in a passerine bird. Mol Ecol Resour 17:642–655

    Article  CAS  PubMed  Google Scholar 

  • Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: models and empirical evidence. Annu Rev Ecol Evol Syst 38(1):459–487

    Article  Google Scholar 

  • Cordonnier M, Gayet T, Escarguel G, Kaufmann B (2019) From hybridization to introgression between two closely related sympatric ant species. J Zoological Syst Evolutionary Res 57(11)

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland, MA

    Google Scholar 

  • Demirbaş Y, Albayrak I, Koca AÖ, Stefanović M, Knauer F, Suchentrunk F (2019) Spatial genetics of brown hares (Lepus europaeus Pallas, 1778) from Turkey: Different gene pool architecture on either side of the Bosphorus?. Mamm Biol 94(1):77–85

  • Djan M, Stefanović M, Veličković N, Lavadinović N, Alves PC, Suchentrunk F (2017) Brown hares (Lepus europaeus Pallas, 1778) from the Balkans: a refined phylogeographic model. Hystrix It J Mamm 28(2):186–193

    Google Scholar 

  • Dudek K, Gaczorek TS, Zieliński P, Babik W (2019) Massive introgression of major histocompatibility complex (MHC) genes in newt hybrid zones. Mol Ecol 00:1–13

    Google Scholar 

  • Edwards SV, Chesnut K, Satta Y, Wakeland EK (1997) Ancestral polymorphism of Mhc class II genes in mice: implications for balancing selection and the mammalian molecular clock. Genetics 146:655–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genet 164: 1567–1587

  • Fickel J, Schmidt A, Putze M, Spittler H, Ludwig A, Steich WJ, Pitra Ch (2005) Genetic structure of populations of European brown hare: implications for management. J Wildl Managem 69:760–770

  • Fijarczyk A, Babik W (2015) Detecting balancing selection in genomes: limits and prospects. Mol Ecol 24(14):3529–3545

    Article  CAS  PubMed  Google Scholar 

  • Flux JEC, Angermann R (1990) In: Chapman JA, Flux (eds) Hares and jackrabbits in rabbits, hares and pikas. Status Survey and Conservation Action Plan. JEC). Gland, Switzerland

    Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genet 133:693–709

  • Gaczorek TS, Marszałek M, Dudek K, Arntzen JW, Wielstra B, Babik W (2023) Interspecific introgression of MHC genes in Triturus newts: evidence from multiple contact zones. Mol Ecol 32:867–880

    Article  CAS  PubMed  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    CAS  PubMed  Google Scholar 

  • Giska I, Farelo L, Pimenta J, Seixas FA, Ferreira MS, Marques JP, Miranda I, Letty J, Jenny H, Häcklander K, Magnussen E, Melo- Ferreira J (2019) Introgression drives repeated evolution of winter coat color polymorphism in hares. Proc Natl Acad Sci USA 116:24150–24156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giska I, Pimenta J, Farelo L et al (2022) The evolutionary pathways for local adaptation in mountain hares. Mol Ecol 31(5):1487–1503

    Article  PubMed  PubMed Central  Google Scholar 

  • Goudet J (2001) Fstat version 2.9.3, A program to estimate and test gene diversities and fixation indices. Lausanne University, Lausanne, Switzerland

    Article  Google Scholar 

  • Goüy de Bellocq J, Suchentrunk F, Baird S, Schaschl H (2009) Evolutionary history of an MHC gene in two leporid species: characterisation of Mhc-DQA in the European brown hare and comparison with the European rabbit. Immunogenetics 61:131–144

    Article  PubMed  Google Scholar 

  • Grossen C, Keller L, Biebach I, The International Goat Genome Consortium, Croll D (2014) Introgression from domestic goat generated variation at the major histocompatibility complex of Alpine Ibex. PLoS Genet 10:e1004438

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamill RM, Doyle D, Duke EJ (2006) Spatial patterns of genetic diversity across European subspecies of the mountain hare, Lepus timidus L. Heredity 97:355–365

    Article  CAS  PubMed  Google Scholar 

  • Hamill RM, Doyle D, Duke EJ (2007) Microsatellite analysis of mountain hares (Lepus timidus hibernicus): low genetic differentiation and possible sex-bias in dispersal. J Mammal 88:784–792

    Article  Google Scholar 

  • Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22(18):4606–4618

    Article  PubMed  Google Scholar 

  • Hedrick PW, Parker KM, Gutierrez-Espeleta GA, Rattink A, Lievers K (2000) Major histocompatibility complex variation in the arabian oryx. Evol Int J Organ Evol 54:2145–2151

    CAS  Google Scholar 

  • Huerta-Sánchez E, Jin X, Asan et al (2014) Altitude adaptation in tibetans caused by introgression of Denisovan‐like DNA. Nature 512(7513):194

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasapidis P, Suchentrunk F, Magoulas A, Kotoulas G (2005) The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of late pleistocene climatic fluctuations and anthropogenic translocations. Mol Phylogenetic Evol 34:55–66

    Article  CAS  Google Scholar 

  • Koutsogiannouli EA, Moutou KA, Sarafidou T, Stamatis C, Spyrou V, Mamuris Z (2009) Major histocompatibility complex variation at class II DQA locus in the brown hare (Lepus europaeus). Mol Ecol 18:4631–4649

    Article  CAS  PubMed  Google Scholar 

  • Kryger U (2002) Genetic variation among South African hares (Lepus Spec.) As inferred from mitochondrial DNA and microsatellites. University of Pretoria, Pretoria, RSA. PhD thesis, 183pp

    Google Scholar 

  • Mamuris Z, Sfougaris AI, Stamatis C, Suchentrunk F (2002) Assessment of genetic structure of Greek brown hare (Lepus europaeus) populations based on variation in random amplified polymorphic DNA (RAPD). Biochem Genet 40:323–338

    Article  CAS  PubMed  Google Scholar 

  • Mansai SP, Innan H (2010) The power of the methods for detecting interlocus gene conversion. Genetics 184:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo-Ferreira J, Boursot P, Suchentrunk F, Ferrand N, Alves PC (2005) Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Mol Ecol 14:2459–2464

    Article  CAS  PubMed  Google Scholar 

  • Melo-Ferreira J, Boursot P, Randi R, Kryukov A, Suchentrunk F, Ferrand N, Alves PC (2007) The rise and fall of the mountain hare (Lepus timidus) during pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula. Mol Ecol 16(3):605–618

    Article  CAS  PubMed  Google Scholar 

  • Melo-Ferreira J, Boursot P, Carneiro M, Esteves PJ, Farelo L, Alves PC (2012) Recurrent introgression of mitochondrial DNA among hares (Lepus spp.) revealed by species-Tree inference and Coalescent simulations. Syst Biol 61:367–381

    Article  CAS  PubMed  Google Scholar 

  • Melo-Ferreira J, Seixas FA, Cheng E, Mills LS, Alves PC (2014) The hidden history of the snowshoe hare, Lepus americanus: extensive mitochondrial DNA introgression inferred from multilocus genetic variation. Mol Ecol 23:4617–4630

    Article  CAS  PubMed  Google Scholar 

  • Mougel F, Mounolou JC, Monnerot M (1997) Nine polymorphic microsatellite loci in the rabbit, Oryctolagus cuniculus. Anim Genet 28:58–59

    CAS  PubMed  Google Scholar 

  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachman MW, Payseur BA (2012) Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Philos Trans R Soc B 367(1587):409–421

    Article  Google Scholar 

  • Otting N, de Groot N, Doxiadis G, Bontrop R (2002) Extensive Mhc-DQB variation in humans and non-human primate species. Immunogenetics 54:230–239

    Article  CAS  PubMed  Google Scholar 

  • Pohjoismäki JLO, Michell C, Levänen R, Smith S (2021) Hybridization with mountain hares increases the functional allelic repertoire in brown hares. Sci Rep 11:15771

    Article  PubMed  PubMed Central  Google Scholar 

  • Pond SLK, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol and Evol 22:1208–1222

    Article  CAS  Google Scholar 

  • Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  CAS  PubMed  Google Scholar 

  • Pond SLK, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155:945–959

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenism. J Hered 86:248e249

    Article  Google Scholar 

  • Reid N, Hughes MF, Hynes RA, Montgomery WI, Prodöhl PA (2022) Bidirectional hybridisation and introgression between introduced European brown hare, Lepus europaeus and the endemic Irish hare, L. Timidus Hibernicus. Conserv Genet 23:1053–1062

    Article  CAS  Google Scholar 

  • Rico C, Rico I, Webb N, Smith S, Bell D, Hewitt G (1994) Four polymorphic loci for the European wild rabbit, Oryctolagus Cuniculis. Anim Genet 25:397

    Article  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinform 15:174–175

  • Schai-Braun SC, Schwienbacher S, Smith S, Hackländer K (2023) Coexistence of European hares and Alpine mountain hares in the Alps: what drives the occurrence and frequency of their hybrids? J Zool (Lond) 320:214–225

    Article  Google Scholar 

  • Schaschl H, Wandeler P, Suchentrunk F, Obexer-Ruff G, Goodman SJ (2006) Selection and recombination drive the evolution of MHC class II DRB diversity in ungulates. Heredity 97:427–437

    Article  CAS  PubMed  Google Scholar 

  • Sebastian A, Migalska M, Biedrzycka A (2018) AmpliSAS and AmpliHLA: web server tools for MHC typing of non-model species and human using NGS data. Methods Mol Biol 249–273

  • Seixas FA, Boursot P, Melo-Ferreira J (2018) The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biol 19(1):91

    Article  PubMed  PubMed Central  Google Scholar 

  • Sert H, Suchentrunk F, Erdogan A (2005) Genetic diversity in brown hares (Lepus europaeus Pallas, 1778) from Anatolia and differentiation among Anatolian and European populations. Mamm Biol 70:171–186

    Article  Google Scholar 

  • Smith AT, Johnston CH (2019) Lepus timidus. The IUCN Red List of Threatened Species 2019: e.T11791A45177198. https://doi.org/10.2305/IUCN.UK.2019-1.RLTS.T11791A45177198.en

  • Smith S, de Bellocq JG, Suchentrunk F, Schaschl H (2011) Evolutionary genetics of MHC class II beta genes in the brown hare, Lepus europaeus. Immunogenetics 63:743–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Royal Soc Lond B: Biol Sci 277:979–988

    CAS  Google Scholar 

  • Stamatis C, Suchentrunk F, Moutou KA et al (2009) Phylogeography of the brown hare (Lepus europaeus) in Europe: a legacy of south-eastern Mediterranean refugia? J Biogeogr 36:515–528

    Article  Google Scholar 

  • Suchentrunk F, Polster K, Giacometti M, Ratti P, Thulin C-G, Ruhlé C (1999) Spatial partitioning of allozyme variability in European mountain hares (Lepus timidus): gene pool divergence across a disjunct distributional range? Z Säugetierk 64:308–318

    Google Scholar 

  • Suchentrunk F, Mamuris Z, Sfougaris AI, Stamatis C (2003) Biochemical genetic variability in brown hares (Lepus europaeus) from Greece. Biochem Genet 41:127–140

    Article  CAS  PubMed  Google Scholar 

  • Suchentrunk F, Mamuris Z, Stamatis C (2005) Introgressive hybridisation in wild living mountain hares (L. timidus varronis) and brown hares (L. europaeus) and morphological consequences. Mamm Biol 70(suppl):39–40

  • Suchentrunk F, Ben Slimen H, Kryger U (2009) Molecular evidence of conspecificity of South African hares conventionally considered Lepus capensis L., 1758. Mamm Biol 74:325–343

    Article  Google Scholar 

  • Surridge AK, Bell DJ, Rico C, Hewitt GM (1997) Polymorphic microsatellite loci in the European rabbit (Oryctolagus cuniculus) are also amplified in other lagomorph species. Anim Genet 28:302–305

    Article  CAS  PubMed  Google Scholar 

  • Surridge A, van der Loo W, Abrantes J, Carneiro M, Hewitt G, Esteves P (2008) Diversity and evolutionary history of the MHC DQA gene in leporids. Immunogenetics 60:515–525

    Article  CAS  PubMed  Google Scholar 

  • Thulin C-G (2003) The distribution of mountain hares Lepus timidus in Europe: a challenge from brown hares L. europaeus ? Mamm Rev 33:29–42

  • Thulin C-G, Fang M, Averianov AO (2006) Introgression from Lepus europaeus to L. Timidus in Russia revealed by mitochondrial single nucleotide polymorphisms and nuclear microsatellites. Hereditas 143:68–76

    Article  PubMed  Google Scholar 

  • Tolesa Z, Bekele E, Tesfaye K et al (2017) Mitochondrial and nuclear DNA reveals reticulate evolution in hares (Lepus spp, Lagomorpha, Mammalia) from Ethiopia. PLoS ONE 12(8):e0180137

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson DJ, McVean G (2006) Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172:1411–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zachos FE, Slimen HB, Hackländer K, Giacometti M, Suchentrunk F (2010) Regional genetic in situ differentiation despite phylogenetic heterogeneity in Alpine mountain hares. J Zool (London) 282:47–53

Download references

Acknowledgements

We thank A. Haiden for supporting with laboratory work, as well as the Swiss hunters, and P. Ratti, (Chur, Switzerland), M. Giaccometti (Stampa), Ch. Rühlé (St. Gallen, Switzerland), G. Haerer (Illnau, Switzerland), and K. Hackländer (Vienna, Austria) for help with organizing genetic samples in the late 1990ie and early 2000s. Partial financial support was provided by Wildlife Research – Franz Suchentrunk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ben Slimen.

Ethics declarations

Compliance with ethical standards

No animal was killed for research purposes only and the hunting followed the regional hunting seasons and legislation. Hunting specimens did not require an ethical assessment prior to being conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors read and approved the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awadi, A., Ben Slimen, H., Smith, S. et al. Patterns of evolution in MHC class II DQA and DQB exon 2 genes of Alpine mountain hares, Lepus timidus varronis, and sympatric and parapatric brown hares, L. europaeus, from Switzerland. Immunogenetics 76, 37–50 (2024). https://doi.org/10.1007/s00251-023-01328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-023-01328-2

Keywords

Navigation