Skip to main content
Log in

Anisotropic dark matter distribution in Saez–Ballester theory of gravitation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, Kantowski–Sach’s cosmological model is investigated in presence of Saez–Ballester scalar tensor theory of gravitation and an anisotropic dark matter distribution the energy momentum tensor. Exact solutions of field equations are obtained by the law of Hubble parameter. An anisotropic stellar object’s stability is discussed with the help of sound speed, Aberu’s stability condition, and causality condition. In addition to this, we studied the physical aspects of the derived cosmological model, such as transverse and radial pressure, energy density, and anisotropy factor etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E Albert Prussian Acad. Sci. 6 98 (1915)

    Google Scholar 

  2. A Pradhan, A Kumar Singh and D S Chouhan Int. J. Theor. Phys. 52 266 (2013)

    Article  Google Scholar 

  3. U K Sharma, R Zia and A Pradhan J. Astrophys. Astron. 40 2 (2019)

    Article  ADS  Google Scholar 

  4. Y Sobhanbabu and M V Santhi Eur. Phys. J. C 81 1040 (2021)

    Article  ADS  Google Scholar 

  5. H Kim Mon. Not. R. Astron. Soc. 364 813 (2005)

    Article  ADS  Google Scholar 

  6. A H Guth Phys. Rev. D 23 347 (1981)

    Article  ADS  Google Scholar 

  7. A Linde Phys. Lett. B 108 389 (1982)

    Article  ADS  Google Scholar 

  8. R L Naidu, Y Aditya, K Deniel Raju, T Vinutha and D R K Reddy New Astron. 85 101564 (2021)

    Article  Google Scholar 

  9. M V Santhi and Y Sobhanbabu Eur. Phys. J. C 80 1198 (2020)

    Article  ADS  Google Scholar 

  10. R K Mishra and A Chand Astrophys. Space Sci 365 76 (2020)

    Article  ADS  Google Scholar 

  11. R K Mishra and H Dua Astrophys. Space Sci 364 195 (2019)

    Article  ADS  Google Scholar 

  12. R L Bowers and E P T Liang Astrophys. J. 188 657 (1974)

    Article  ADS  Google Scholar 

  13. F Weber Prog. Part. Nucl. Phys. 54 193 (2005)

    Article  ADS  Google Scholar 

  14. L Herrera and N O Santos Phys. Rep. 286 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. T Harko and M K Mak Ann. Phys. 11 3 (2002)

    Article  Google Scholar 

  16. F Rahaman, S Ray, A K Jafry and K Chakraborty Phys. Rev. D. 82 104055 (2010)

    Article  ADS  Google Scholar 

  17. P Bhar, K N Singh, N Sarkar and F Rahaman Eur. Phys. J. C 77 596 (2017)

    Article  ADS  Google Scholar 

  18. P Bhar and P Rej arXiv:2106.01316v1[gr-qc] (2016)

  19. M Sharifa and A Waseemb Eur. Phys. J. C 78 868 (2018)

    Article  ADS  Google Scholar 

  20. N Sarkar, S Sarkar, K N Singh and F Rahaman Eur. Phys. J. C 80 255 (2020)

    Article  ADS  Google Scholar 

  21. E Kurmanov, K Boshkayev, R Giambò, T Konysbayev, O Luongo, D Malafarina and H Quevedo Astrophys. J. 925 210 (2022)

    Article  ADS  Google Scholar 

  22. Pastory D Makalo and Jefta M Sunzu New Astron. 98 101935 (2023)

    Article  Google Scholar 

  23. G Oliveira-Neto, D L Canedo and G. A. Monerat Gen. Relativ. Quantum Cosmol. http://arxiv.org/abs/2109.12229v1 (2021)

  24. T Vinutha, K Niharika and K S Kavya Astrophysics 66 64 (2023)

    Article  ADS  Google Scholar 

  25. G G Luciano Phys. Dark Univ. 41 101237 (2023)

    Article  Google Scholar 

  26. M V Santhi and T Chinnappalanaidu Indian J. Phys. 96 953 (2022)

    Article  ADS  Google Scholar 

  27. A N Rao, D Neelima, Y Prasanthi and K Suresh Turk. J. Comput. Math. Educ. 13 932 (2022)

    Google Scholar 

  28. K D Raju, M P V V Bhaskara Rao, Y Aditya, T Vinutha and D R K Reddy Can. J. Phys. 98 11 (2022)

    Google Scholar 

  29. A S Nimkar, S R Hadole and J S Wath Indian J. Phys. 97 1633 (2023)

    Article  ADS  Google Scholar 

  30. S Thirukkanesh, R S Bogadi, M Govender and S Moyo Eur. Phys. J. C. 81 62 (2021)

    Article  ADS  Google Scholar 

  31. L Herrera Phys. Rev. D 101 104024 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. N Ahmed and S Z Alamri Res. Astron. Astrophys. 18 10 (2018)

    Article  Google Scholar 

  33. G A Rave Franco, C Escamilla-Rivera and J Levi Said Eur. Phys. J. C. 80 677 (2020)

    Article  ADS  Google Scholar 

  34. H Knutsen Astrophys Space Sci. 140 385 (1988)

    Article  ADS  Google Scholar 

  35. H Knutsen Astrophys. Space Sci. 232 163 (1988)

    Google Scholar 

  36. M I Wanas and M A Bakry Astrophys. Space Sci. 228 239 (1995)

    Article  ADS  Google Scholar 

  37. D D Pawar, S P Shahare and V J Dagwal Mod. Phys. Lett. A 33 15 (2018)

    Article  Google Scholar 

  38. H Abreu, H Hernandez and L A Nunez Class Quantum Gravity 24 4631 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Wath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wath, J.S., Nimkar, A.S. Anisotropic dark matter distribution in Saez–Ballester theory of gravitation. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03033-y

Keywords

Navigation