Skip to main content

Advertisement

Log in

The Effect of Boron Content on the Structure and Mechanical Properties of Electron-Beam High-Entropy AlNiCoFeCrTiB Coatings

  • PROTECTIVE AND FUNCTIONAL POWDER COATINGS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

High-entropy coatings produced by electron-beam deposition of multicomponent Al‒Ni‒Co‒Fe‒Cr‒Ti‒Bx (x = 0, 0.25, 0.5, and 1 mol) powder mixtures onto steel substrates in vacuum were examined. The effect of boron content on the phase composition, structure, and strength properties of the AlNiCoFeCrTiBx coatings was studied employing X-ray diffraction, microstructural analysis, and micromechanical tests. The AlNiCoFeCrTi and AlNiCoFeCrTiB0.25 coatings showed a typical dendritic and interdendritic structure and consisted of two substitutional solid solutions with a body-centered cubic (bcc) structure, differing in lattice parameters. An increase in the boron content to 0.5 mol changed the phase composition and led to the formation of in-situ titanium diboride TiB2 as fine inclusions and chromium boride Cr2B as elongated inclusions in the coatings besides the two bcc solid solutions (bcc1 and bcc2). When 1 mol of boron was added, the coatings remained four-phase, while the amount and sizes of TiB2 and Cr2B inclusions increased. Moreover, with 1 mol of boron, the ratio between the bcc1 and bcc2 phases increased toward bcc2 because of the removal of chromium and titanium atoms. Mechanical tests showed that the microhardness and yield stress of the AlNiCoFeCrTiBx coatings produced by electron-beam deposition increased by 1.6 times when boron content raised to 1 mol: from 8.8 and 2.4 GPa for the AlNiCoFeCrTi coatings to 14.2 and 4 GPa for the AlNiCoFeCrTiB coatings. The significant enhancement in the strength indicators (hardness and yield stress) of the high-entropy coatings with greater boron content could be attributed to the solid-solution strengthening effect of interstitial boron atoms and to the strengthening effect of boride phase inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Murty, Jien-Wie Yeh, S. Ranganathan, and P. Bhattacharjee, High Entropy Alloys, 2nd ed., Elsevier (2019), https://doi.org/10.1016/c2017-0-03317-7.

  2. D.B. Miracle and O.N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater., 122, 448–511 (2017), https://doi.org/https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  CAS  Google Scholar 

  3. Y. Zhang, High-Entropy Materials, Springer, Singapore (2019). https://doi.org/https://doi.org/10.1007/978-981-13-8526-1.

    Article  Google Scholar 

  4. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, “High-entropy alloy: challenges and prospects,” Mater. Today, 19, 349–362 (2016), https://doi.org/https://doi.org/10.1016/j.mattod.2015.11.026.

    Article  CAS  Google Scholar 

  5. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, and Y. Liu, “A review on fundamental of high entropy alloys with promising high–temperature properties,” J. Alloys Compd., 760, 15–30 (2018), https://doi.org/https://doi.org/10.1016/j.jallcom.2018.05.067.

    Article  CAS  Google Scholar 

  6. X. Yan and Y. Zhang, “Functional properties and promising applications of high entropy alloys,” Scr. Mater., 187, 188–193 (2020), https://doi.org/https://doi.org/10.1016/j.scriptamat.2020.06.017.

    Article  CAS  Google Scholar 

  7. E.P. George, D. Raabe, and R.O. Ritchie, “High-entropy alloys,” Nat. Rev. Mater., 4, 515–534 (2019), https://doi.org/https://doi.org/10.1038/s41578-019-0121-4.

    Article  CAS  Google Scholar 

  8. A. Fu, Y. Cao, Z. Xie, J. Wang, and B. Liu, “Microstructure and mechanical properties of Al–Fe–Co–Cr–Ni high entropy alloy fabricated via powder extrusion,” J. Alloys Compd., 943, 169052 (2023), https://doi.org/https://doi.org/10.1016/j.jallcom.2023.169052.

    Article  CAS  Google Scholar 

  9. W. Lu, W. Guo, Z. Wang, J. Li, F. An, G. Dehm, D. Raabe, C.H. Liebscher, and Z. Li, “Advancing strength and counteracting embrittlement by displacive transformation in heterogeneous high-entropy alloys containing sigma phase,” Acta Mater., 246, 118717 (2023), https://doi.org/https://doi.org/10.1016/j.actamat.2023.118717.

    Article  CAS  Google Scholar 

  10. M.J. Chae, H. Lee, A. Sharma, and B. Ahn, “Effect of light (X = Mg, Si) and heavy (X = Zn) metals on the microstructural evolution and densification of AlCuFeMnTi-X high-entropy alloy processed by advanced powder metallurgy,” Powder Metall., 64, 228–234 (2021), https://doi.org/https://doi.org/10.1080/00325899.2021.1909212.

    Article  CAS  Google Scholar 

  11. J. Li, Y. Huang, X. Meng, and Y. Xie, “A review on high entropy alloys coatings: fabrication processes and property assessment,” Adv. Eng. Mater., 21, 1900343 (2019), https://doi.org/https://doi.org/10.1002/adem.201900343.

    Article  CAS  Google Scholar 

  12. A. Sharma, “High entropy alloy coatings and technology,” Coatings, 11, 372 (2021), https://doi.org/https://doi.org/10.3390/coatings11040372.

    Article  CAS  Google Scholar 

  13. D.V. Hushchyk, A.I. Yurkova, V.V. Cherniavsky, I.I. Bilyk, and S.O. Nakonechnyy, “Nanostructured AlNiCoFeCrTi high-entropy coating performed by cold spray,” Appl. Nanosci., 10, 4879–4890 (2020), https://doi.org/https://doi.org/10.1007/s13204-020-01364-4.

    Article  CAS  Google Scholar 

  14. W. Li, P. Liu, and P.K. Liaw, “Microstructures and properties of high-entropy alloy films and coatings: a review,” Mater. Res. Lett., 6, 199–229 (2018), https://doi.org/https://doi.org/10.1080/21663831.2018.1434248.

    Article  CAS  Google Scholar 

  15. V.F. Gorban, S.O. Firstov, M.O. Krapivka, A.V. Samelyuk, and D.V. Kurylenko, “Influence of various factors on the properties of solid-soluble high-entropy alloys based on BCC and FCC phases,” Mater. Sci., 58, 135–140 (2022), https://doi.org/https://doi.org/10.1007/s11003-022-00641-7.

    Article  Google Scholar 

  16. Z. Li, C.C. Tasan, H. Springer, B. Gault, and D. Raabe, “Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys,” Sci. Rep., 7, 40704 (2017), https://doi.org/https://doi.org/10.1038/srep40704.

    Article  CAS  Google Scholar 

  17. Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.-G. Nieh, and Z. Lu, “Publisher Correction: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes,” Nature, 565, E8 (2018), https://doi.org/https://doi.org/10.1038/s41586-018-0834-3.

    Article  CAS  Google Scholar 

  18. H. Luo, W. Lu, X. Fang, D. Ponge, Z. Li, and D. Raabe, “Beating hydrogen with its own weapon: Nanotwin gradients enhance embrittlement resistance of a high-entropy alloy,” Mater. Today, 21, 1003–1009 (2018), https://doi.org/https://doi.org/10.1016/j.mattod.2018.07.015.

    Article  CAS  Google Scholar 

  19. J.Y. Aguilar-Hurtado, A. Vargas-Uscategui, D. Zambrano-Mera, and R. Palma-Hillerns, “The effect of boron content on the microstructure and mechanical properties of Fe50–XMn30Co10Cr10BX (x = 0, 0.3, 0.6 and 1.7 wt.%) multi-component alloys prepared by arc-melting,” Mater. Sci. Eng. A, 748, 244–252 (2019), https://doi.org/https://doi.org/10.1016/j.msea.2019.01.088.

    Article  CAS  Google Scholar 

  20. L. Guirong, G. Lipeng, W. Hongming, L. Ming, W. Changwen, W. Haoran, Y. Yuwei, R. Wenxiang, and L. Jiaqi, “Effects of boron on microstructure and properties of microwave sintered FeCoNi1.5CuY0.2 highentropy alloy,” J. Alloys Compd., 866, 157848 (2021), https://doi.org/https://doi.org/10.1016/j.jallcom.2020.157848.

    Article  CAS  Google Scholar 

  21. B. Xin, A. Zhang, J. Han, J. Zhang, and J. Meng, “Enhancing mechanical properties of the boron doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloy via tuning composition and microstructure,” J. Alloys Compd., 896, 162852 (2022), https://doi.org/https://doi.org/10.1016/j.jallcom.2021.162852.

    Article  CAS  Google Scholar 

  22. X. Gao, L. Wang, N. Guo, L. Luo, G. Zhu, C. Shi, Y. Su, and J. Guo, “In-situ development of MB2 and their effect on microstructure and mechanical properties of refractory Hf0.5Mo0.5NbTiZr high entropy alloy matrix composites,” Int. J. Refract. Met. Hard Mater., 96, 105473 (2021), https://doi.org/https://doi.org/10.1016/j.ijrmhm.2021.105473.

    Article  CAS  Google Scholar 

  23. C. Zhang, G.J. Chen, and P.Q. Dai, “Evolution of the microstructure and properties of laser-clad FeCrNiCoBx high-entropy alloy coatings,” Mater. Sci. Technol., 32, 1666–1672 (2016), https://doi.org/https://doi.org/10.1080/02670836.2015.1138035.

    Article  CAS  Google Scholar 

  24. F. Chang, B. Cai, C. Zhang, B. Huang, S. Li, and P. Dai, “Thermal stability and oxidation resistance of FeCrxCoNiB high-entropy alloys coatings by laser cladding,” Surf. Coat. Technol., 359, 132–140 (2019), https://doi.org/https://doi.org/10.1016/j.surfcoat.2018.12.072.

    Article  CAS  Google Scholar 

  25. D. Liu, J. Zhao, Y. Li, W. Zhu, and L. Lin, “Effects of boron content on microstructure and wear properties of FeCoCrNiBx high-entropy alloy coating by laser cladding,” Appl. Sci., 10, 49 (2019),

    Article  Google Scholar 

  26. https://doi.org/10.3390/app10010049.

  27. 26. A. Takeuchi and A. Inoue, “Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys,” Mater. Trans. JIM, 41, 1372–1378 (2000), https://doi.org/https://doi.org/10.2320/matertrans1989.41.1372.

    Article  CAS  Google Scholar 

  28. 27. A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element,” Mater. Trans., 46, 2817–2829 (2005), https://doi.org/https://doi.org/10.2320/matertrans.46.2817.

    Article  CAS  Google Scholar 

  29. 28. S. Schiller, U. Heisig, and S. Panzer, Electron-Beam Technology [Russian translation], Energiya, Moscow (1980), p. 528.

    Google Scholar 

  30. 29. T. Yu, H. Wang, K. Han, and B. Zhang, “Microstructure and wear behavior of AlCrTiNbMo high-entropy alloy coating prepared by electron beam cladding on Ti600 substrate,” Vacuum, 199, 110928 (2022), https://doi.org/https://doi.org/10.1016/j.vacuum.2022.110928.

    Article  CAS  Google Scholar 

  31. B.A. Galanov, Yu.V. Milman, S.I. Chugunova, and I.V. Goncharova, “Investigation of mechanical properties of high-hardness materials by indentation,” Superhard Mater., No. 3, 23–35 (1999).

  32. D. Tabor, The Hardness of Metals, Oxford University Press (2000), p. 175, https://archive.org/details/TaborHardnessOfMetals/page/n1/mode/2up.

  33. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Pearson Education Limited (2014), p. 654, ISBN 10: 1-292-04054-8. ISBN 13: 978-1-292-04054-7.

  34. 33. J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, and S.-J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements,” Mater. Chem. Phys., 103, 41–46 (2007), https://doi.org/https://doi.org/10.1016/j.matchemphys.2007.01.003.

    Article  CAS  Google Scholar 

  35. 34. G.V. Samsonov, T.I. Serebryakova, and V.A. Neronov, Borides [in Russian], Atomizdat, Moscow (1975), p. 376.

    Google Scholar 

  36. 35. B. Yang, L. Ma, and P. Zhao, “Effect of boron on the microstructure and mechanical properties of as-cast and annealed CrFeNi medium-entropy alloys,” Mater. Sci. Eng. A, 863, 144524 (2023), https://doi.org/https://doi.org/10.1016/j.msea.2022.144524.

    Article  CAS  Google Scholar 

  37. R.W. Cahn and P. Haasen, Physical Metallurgy, 3rd ed., North-Holland (1983).

  38. V.S. Zolotarevskii, Mechanical Properties of Metals [in Russian], 3rd ed., MISIS, Moscow (1998), p. 400, ISBN: 5-87623-017-0.

  39. 38. J.P. Hirth and M. Cohen, “On the strength-differential phenomenon in hardened steel,” Metall. Mater. Trans., 1, 3–8 (1970), https://doi.org/https://doi.org/10.1007/bf02819235.

    Article  CAS  Google Scholar 

  40. 39. R.P. Reed, “Nitrogen in austenitic stainless steels,” JOM, 41, 16–21 (1989), https://doi.org/https://doi.org/10.1007/bf03220991.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the National Research Fund of Ukraine (Grant No. 2020.02/0108) and the Ministry of Education and Science of Ukraine (Project No. 0121U109789).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Nakonechnyi.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 62, Nos. 5–6 (551), pp. 77–93, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakonechnyi, S.O., Yurkova, A.I., Loboda, P.I. et al. The Effect of Boron Content on the Structure and Mechanical Properties of Electron-Beam High-Entropy AlNiCoFeCrTiB Coatings. Powder Metall Met Ceram 62, 326–338 (2023). https://doi.org/10.1007/s11106-023-00396-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-023-00396-z

Keywords

Navigation