Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 19, 2023

Optoelectronics and thermoelectric performances in CuX (X = F, Cl, Br, and I)

  • Torkia Ghellab , Zoulikha Charifi , Hakim Baaziz EMAIL logo and Nadjia Latelli

Abstract

The current study focused on examining the structural, mechanical, and optoelectronic properties of CuF, CuCl, CuBr, and CuI by the utilisation of the FP-LAPW method. The calculations reveal that GGA is a better fit than LDA for evaluating structural characteristics, including lattice parameters and bulk modulus. The examination of the band structure reveals that CuF exhibits metallic behaviour, whilst the compounds CuCl, CuBr, and CuI exhibit semiconducting properties, characterised by direct fundamental gaps (Γ → Γ) of 0.516, 0.425, and 1.049 eV, respectively. The peak absorption values for CuCl, CuBr, and CuI are located at 10.68 eV, 9.53 eV, and 7.68 eV, respectively. All materials have ultraviolet absorption peaks. Therefore, the compounds demonstrate substantial absorption in the low- and mid-ultraviolet wavelengths. The four compounds exhibit anisotropic properties, possess ductility, and demonstrate mechanical stability. These entities possess the ability to endure a wide range of temperatures. The thermoelectric performance of the three semiconductors, CuCl, CuBr, and CuI, was investigated. At 300 K, the k L values for CuBr, CuCl, and CuI, are 2.89 W/mK, 3.98 W/mK, and 3.56 W/mK, and the Gruneisen values are as follows: γ (CuCl) = 2.4087, γ (CuBr) = 2.4747, and γ (CuI) = 2.1962. At a temperature of 600 K, the k T value is found to be relatively low. The measured values for the k T of CuCl, CuBr, and CuI are around 1.7818 W m−1 K−1, 1.5109 W m−1 K−1, and 2.8580 W m−1 K−1, respectively. At a temperature of 300 K, the Seebeck coefficients (S) for CuCl, CuBr, and CuI are measured to be 1192.7964 μV/K, 1170.5882 μV/K, and −65.7454 μV/K, respectively. At a temperature of 800 K, the p-type compound CuBr exhibits a maximum figure of merit (ZT) value of 0.6691, corresponding to a charge carrier concentration of 31.7926 × 1020 cm3. The CuCl and CuI compounds exhibit the maximum ZT values of 0.52043 and 0.5609, respectively. In order to achieve the desired results, it is necessary to decrease the charge carrier concentration in CuCl to n = 0.514 × 1022 cm−3 and increase the charge carrier concentration in CuI to n = 9.686 × 1022 cm−3; alternatively, the chemical potentials should be decreased by 0.2563 Ryd and 0.3974 Ryd, respectively.


Corresponding author: Hakim Baaziz, Department of Physics, Faculty of Science, University of M’sila, 28000 M’sila, Algeria; and Laboratory of Physics and Chemistry of Materials, University of M’sila, M’sila, Algeria, E-mail:

Acknowledgments

The authors (T. Ghellab, H. Baaziz and Z. Charifi,) would like to thank the General Directorate for Scientific Research and Technological Development for their financial support during the realization of this work.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: T. Ghellab, Writing- Original draft preparation, H. Baaziz, Supervision; Methodology, review & editing, Z. Charifi, Investigation, Methodology, Writing – review & editing, N. latelli, Data curation, Formal analysis.

  4. Competing interests: I have the honor to write to you. I would like to send you our manuscript entitled: < < Optoelectronics and Thermoelectric Performances in CuX (X = F, Cl, Br, and I) >> by. T. Ghellab et al. to publish at your journal: Solid State Communications as a regular paper. I declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  5. Research funding: None declared.

  6. Data availability: The raw data can be obtained on request from the corresponding author.

References

[1] M. Ferhat, B. Bouhafs, H. Aourag, A. Zaoui, and M. Certier, “The electronic structure of CuCl,” Comput. Mater. Sci., vol. 20, p. 267, 2001. https://doi.org/10.1016/s0927-0256(00)00181-6.Search in Google Scholar

[2] A. Zunger and M. L. Cohen, “Electronic structure of CuCl,” Phys. Rev. B, vol. 20, p. 1189, 1979. https://doi.org/10.1103/physrevb.20.1189.Search in Google Scholar

[3] H.-C. Hsueh, J. R. Maclean, G. Y. Guo, M.-H. Lee, S. J. Clark, and G. J. Ackland, “Pressure-induced polymorphism in CuCl: an ab initio study, J. Crain,” Phys. Rev. B, vol. 51, p. 12216, 1995. https://doi.org/10.1103/physrevb.51.12216.Search in Google Scholar PubMed

[4] W. Sekkal, A. Zaoui, A. Laref, M. Certier, and H. Aourag, “Molecular dynamics simulation of CuI using a three-body potential,” J. Phys.: Condens. Matter, vol. 12, p. 6173, 2000. https://doi.org/10.1088/0953-8984/12/28/313.Search in Google Scholar

[5] S. Ves, D. Gl€otzel, M. Cardona, and H. Overhof, “Pressure dependence of the optical properties and the band structure of the copper and silver halides,” Phys. Rev. B, vol. 24, p. 3073, 1981. https://doi.org/10.1103/physrevb.24.3073.Search in Google Scholar

[6] R. Chelikousky and J. K. Burdett, “Ionicity and the structural stability of solids,” Phys. Rev. Lett., vol. 56, p. 961, 1986. https://doi.org/10.1103/physrevlett.56.961.Search in Google Scholar PubMed

[7] R. Chelikousky, “High-pressure phase transitions in diamond and zinc-blende semiconductors,” Phys. Rev. B, vol. 35, p. 1174, 1987. https://doi.org/10.1103/physrevb.35.1174.Search in Google Scholar PubMed

[8] A. Mujica and R. J. Needs, “First-principles calculations of the structural properties, stability, and band structure of complex tetrahedral phases of germanium: ST12 and BC8,” Phys. Rev. B, vol. 48, p. 17010, 1993. https://doi.org/10.1103/physrevb.48.17010.Search in Google Scholar PubMed

[9] B. Amrani, T. Benmessabih, M. Tahiri, I. Chihoub, S. Hiadsi, and F. Hamdache, “First principles study of structural, elastic, electronic and optical properties of CuCl, CuBr and CuI compounds under hydrostatic pressure,” Phys. B, vol. 381, pp. 179–186, 2006. https://doi.org/10.1016/j.physb.2006.01.447.Search in Google Scholar

[10] S. Hull and D. A. Keen, “High-pressure polymorphism of the copper (I) halides: a neutron-diffraction study to∼ 10 GPa,” Phys. Rev. B, vol. 50, p. 5868, 1994. https://doi.org/10.1103/physrevb.50.5868.Search in Google Scholar PubMed

[11] A. Blacha, N. E. Christensen, and M. Cardona, “Electronic structure of the high-pressure modifications of CuCl, CuBr, and CuI,” Phys. Rev. B, vol. 33, p. 2413, 1986. https://doi.org/10.1103/physrevb.33.2413.Search in Google Scholar PubMed

[12] F. Badi, S. Louhibi, M. R. Aced, N. Mehnane, and N. Sekkal, “Investigation of the structural and electronic properties of quantum well superlattices made of CuCl, CuBr and CuI,” Phys. E, vol. 41, p. 45, 2008. https://doi.org/10.1016/j.physe.2008.05.022.Search in Google Scholar

[13] H. Rekab Djabri, R. Khatir, S. Louhibi-Fasla, I. Messaoudi, and H. Achour, “FPLMTO study of new phase changes in CuX (X= Cl, Br, I) compounds under hydrostatic pressure,” Comput. Condens. Matter, vol. 10, p. 15, 2017. https://doi.org/10.1016/j.cocom.2016.04.003.Search in Google Scholar

[14] D. D. Koelling and B. N. Harmon, “A technique for relativistic spin-polarised calculations,” J. Phys. C: Solid State Phys., vol. 10, p. 3107, 1977. https://doi.org/10.1088/0022-3719/10/16/019.Search in Google Scholar

[15] P. Hohenberg and W. Kohn, “Density functional theory (DFT),” Phys. Rev. B, vol. 136, p. 864, 1964. https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

[16] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna, Austria, Vienna University of Technology, 2001.Search in Google Scholar

[17] W. Kohn and L. S. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, p. A1133, 1965. https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

[18] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B, vol. 45, p. 13244, 1992. https://doi.org/10.1103/physrevb.45.13244.Search in Google Scholar PubMed

[19] G. K. H. Madsen and D. J. Singh, “BoltzTraP. A code for calculating band-structure dependent quantities,” Comput. Phys. Commun., vol. 175, p. 67, 2006. https://doi.org/10.1016/j.cpc.2006.03.007.Search in Google Scholar

[20] D. Westphal and A. Goldman, “Valence band structure of CuCl: an angle-resolved photoemission study,” J. Phys. C, vol. 15, p. 6661, 1982. https://doi.org/10.1088/0022-3719/15/32/026.Search in Google Scholar

[21] J. G. Gross, S. Lewonczuk, M. A. Khan, and J. Rengeissen, “The reflection spectra of cuprous halides at low temperature in the 4.5 to 30 eV range and related band structures,” Solid State Commun., vol. 36, p. 907, 1980. https://doi.org/10.1016/0038-1098(80)91179-5.Search in Google Scholar

[22] W. Shan, W. Walukiewicz, J. W. AgerIII, et al.., “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett., vol. 82, p. 1221, 1992. https://doi.org/10.1103/physrevlett.82.1221.Search in Google Scholar

[23] D. R. Penn, “Wave-number-dependent dielectric function of semiconductors,” Phys. Rev. B, vol. 128, p. 2093, 1962. https://doi.org/10.1103/physrev.128.2093.Search in Google Scholar

[24] T. Ghellab, H. Baaziz, Z. Charifi, K. Bouferrache, M. A. Saeed, and A. Telfah, “Ab initio full-potential study of the fundamental properties of chalcopyrite semiconductors XPN2 (X= H, Cu),” Mater. Res. Express, vol. 6, p. 075906, 2019. https://doi.org/10.1088/2053-1591/ab1325.Search in Google Scholar

[25] T. Ghellab, Z. Charifi, H. Baaziz, Ş. Uğur, G. Uğur, and F. Soyalp, “First principles study of hydrogen storage material NaBH4 and LiAlH4 compounds: electronic structure and optical properties,” Phys. Scr., vol. 91, p. 045804, 2016. https://doi.org/10.1088/0031-8949/91/4/045804.Search in Google Scholar

[26] T. Ghellab, Z. Charifi, H. Baaziz, K. Bouferrache, and B. Hamad, “Electronic structure and optical properties of complex hydrides LiBH4 and NaAlH4 compounds,” Int. J. Energy Res., vol. 43, pp. 3653–3667, 2019. https://doi.org/10.1002/er.4517.Search in Google Scholar

[27] J. F. Nye, Physical Properties of Crystals, Oxford, Oxford University Press, 1985.Search in Google Scholar

[28] S. F. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 45, p. 823, 1954. https://doi.org/10.1080/14786440808520496.Search in Google Scholar

[29] W. Voigt, Lehrbuch der Kristallphysik, Leipzig, Taubner, 1928.Search in Google Scholar

[30] A. Reuss, “Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle,” Z. Angew. Math. Mech., vol. 9, p. 49, 1929. https://doi.org/10.1002/zamm.19290090104.Search in Google Scholar

[31] R. Hill, “Elastic properties of reinforced solids: some theoretical principles,” J. Mech. Phys. Solids, vol. 11, p. 357, 1963. https://doi.org/10.1016/0022-5096(63)90036-x.Search in Google Scholar

[32] R. Hill, “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc. Lond. A, vol. 65, p. 349, 1952. https://doi.org/10.1088/0370-1298/65/5/307.Search in Google Scholar

[33] M. E. Gruner, R. Niemann, P. Entel, et al.., “Modulations in martensitic Heusler alloys originate from nanotwin ordering,” Sci. Rep., vol. 8, p. 8489, 2018. https://doi.org/10.1038/s41598-018-26652-6.Search in Google Scholar PubMed PubMed Central

[34] Z. Wei, Y. Shen, Z. Zhang, et al.., “Low-pressure-induced giant barocaloric effect in an all-d-metal Heusler Ni35.5Co14.5Mn35Ti15 magnetic shape memory alloy,” APL Mater., vol. 8, p. 051101, 2020. https://doi.org/10.1063/5.0005021.Search in Google Scholar

[35] I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Naukova Dumka, Kiev, 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, I. N. Frantsevich, Ed., Kiev, NaukovaDumka, 1982.Search in Google Scholar

[36] J. Haines, J. M. Leger, and G. Bocquillon, “Synthesis and design of superhard materials,” Annu. Rev. Mater. Res., vol. 31, p. 1, 2001. https://doi.org/10.1146/annurev.matsci.31.1.1.Search in Google Scholar

[37] P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, “Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2,” J. Appl. Phys., vol. 84, p. 4891, 1998. https://doi.org/10.1063/1.368733.Search in Google Scholar

[38] S. I. Ranganathan and M. Ostoja-Starzewski, “Universal elastic anisotropy index,” Phys. Rev. Lett., vol. 101, p. 55504, 2008. https://doi.org/10.1103/physrevlett.101.055504.Search in Google Scholar PubMed

[39] J. F. Nye, Properties of Crystals, New York, Oxford University Press, 1985.Search in Google Scholar

[40] P. Wachter, M. Filzmoser, and J. Rebiant, “Electronic and elastic properties of the light actinide tellurides,” Phys. B, vol. 293, p. 199, 2001. https://doi.org/10.1016/s0921-4526(00)00575-5.Search in Google Scholar

[41] W. Voigt, Semiconductors and Semimetals. Lehrbuch der Kristall-physik, Leipzing, Taubner, 1929.Search in Google Scholar

[42] E. Schreiber, O. L. Anderson, and N. Soga, Elastic Constants and Their Measurements, New York, McGraw-Hill, 1973.Search in Google Scholar

[43] G. K. Madsen, J. Carrete, and M. J. Verstraete, “BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients,” Comput. Phys. Commun., vol. 231, p. 140, 2018. https://doi.org/10.1016/j.cpc.2018.05.010.Search in Google Scholar

[44] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano, Boca Raton, FL, USA, CRC Press, 2018.Search in Google Scholar

[45] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater., vol. 7, p. 105, 2008. https://doi.org/10.1038/nmat2090.Search in Google Scholar PubMed

[46] D. T. Morelli, G. A. Slack, and S. L. J. S. Shindé Goela, High Thermal Conductivity Materials, New York, Springer, 2006, p. 37.Search in Google Scholar

[47] C. L. Julian, “Theory of heat conduction in rare-gas crystals,” Phys. Rev., vol. A128, p. 137, 1965.10.1103/PhysRev.137.A128Search in Google Scholar

[48] A. Bulusu and D. G. Walker, “Review of electronic transport models for thermoelectric materials,” Superlattices Microstruct., vol. 44, p. 1, 2008. https://doi.org/10.1016/j.spmi.2008.02.008.Search in Google Scholar

[49] T. Fang, S. Zheng, H. Chen, H. Cheng, L. Wang, and P. Zhang, “Electronic structure and thermoelectric properties of p-type half-Heusler compound NbFeSb: a first-principles study,” RSC Adv., vol. 6, p. 10507, 2016. https://doi.org/10.1039/c5ra23091h.Search in Google Scholar

[50] M. Matougui, B. Bouadjemi, M. Houari, et al.., “Rattling Heusler semiconductors’ thermoelectric properties: first-principles prediction,” Chin. J. Phys., vol. 57, p. 195, 2019. https://doi.org/10.1016/j.cjph.2018.11.015.Search in Google Scholar

[51] Z. A. A. R. Almaghbash, O. Arbouche, A. Dahani, et al.., “Thermoelectric and piezoelectric properties in half-heusler compounds TaXSn (X= Co, Rh and Ir) based on ab initio calculations,” Int. J. Thermophys., vol. 42, p. 5, 2021. https://doi.org/10.1007/s10765-020-02755-z.Search in Google Scholar

[52] J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, and J. Yang, “Evaluation of half‐Heusler compounds as thermoelectric materials based on the calculated electrical transport properties,” Adv. Funct. Mater., vol. 18, p. 2880, 2008. https://doi.org/10.1002/adfm.200701369.Search in Google Scholar

[53] H. Kara, M. Upadhyay Kahaly, and K. Özdoğan, “Thermoelectric response of quaternary Heusler compound CrVNbZn,” J. Alloys Compd., vol. 735, p. 950, 2018. https://doi.org/10.1016/j.jallcom.2017.11.022.Search in Google Scholar

[54] H. Ma, C.-L. Yang, M.-S. Wang, X.-G. Ma, and Y.-G. Yi, “Effect of M elements (M= Ti, Zr, and Hf) on thermoelectric performance of the half-Heusler compounds MCoBi,” J. Phys. D Appl. Phys., vol. 52, p. 255501, 2019. https://doi.org/10.1088/1361-6463/ab137d.Search in Google Scholar

[55] T. Ghellab, H. Baaziz, Z. Charifi, et al.., “The structural, electronic, optical, thermodynamical and thermoelectric properties of the Bi2Al4Se8 compound for solar photovoltaic semiconductors,” Mater. Sci. Semicond. Process., vol. 141, p. 106415, 2022. https://doi.org/10.1016/j.mssp.2021.106415.Search in Google Scholar

[56] T. Ghellab, H. Baaziz, Z. Charifi, et al.., “Structural, elastic, electronic and thermoelectric properties of XPN2 (X = Li, Na): first-principles study,” Int. J. Mod. Phys. B, vol. 33, p. 1950234, 2019. https://doi.org/10.1142/s0217979219502345.Search in Google Scholar

[57] I. Mili1, H. Latelli, T. Ghellab, Z. Charifi, H. Baaziz, and F. Soyalp, “The study of structural, electronic and thermoelectric properties of Ca1−xYbxZn2Sb2 (x = 0, 0.25, 0.5, 0.75, 1) Zintl compounds,” Int. J. Mod. Phys. B, vol. 35, no. 7, p. 2150100, 2021. https://doi.org/10.1142/s0217979221501009.Search in Google Scholar

[58] A. Telfah, T. Ghellab, H. Baaziz, Z. Charifi, A. M. Alsaad, and R. Sabirianov, “First-principles calculations to investigate strong half-metallic ferromagnetic and thermoelectric sensibility of LiCrX (X= S, Se, and Te) alloys,” J. Magn. Magn. Mater., vol. 562, p. 169822, 2022. https://doi.org/10.1016/j.jmmm.2022.169822.Search in Google Scholar

[59] Z. Charifi, T. Ghellab, H. Baaziz, and F. Soyalp, “Characterization of quaternary Heusler alloys CoFeYGe (Y = Ti, Cr) with respect to structural, electronic, magnetic, mechanical, and thermoelectric features,” Int. J. Energy Res., vol. 46, p. 13855, 2022. https://doi.org/10.1002/er.8104.Search in Google Scholar

[60] T. Ghellab, H. Baaziz, Z. Charifi, and H. Latelli, “Enhancement of thermoelectric performances in n-type RbCrZ (Z= S, Se, Te) half-metallic ferromagnetic alloys via charge carrier concentration or chemical potential,” Phys. B, vol. 653, p. 414678, 2023. https://doi.org/10.1016/j.physb.2023.414678.Search in Google Scholar

Received: 2023-08-23
Accepted: 2023-12-04
Published Online: 2023-12-19
Published in Print: 2024-03-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2023-0237/html
Scroll to top button