Skip to main content
Log in

Electrical properties of a 2 × n non-regular hammock network

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Consider a class of 2 × n hammock network with two special conditions, the left and right boundary is zero resistance (collapse into a pole), and the middle horizontal axis is arbitrary resistance, which is a new model that has not been solved before. By using the recursion transform approach with potential parameters (RT-V), two set of novel equations are established for the determination of the precise electrical properties (potential and resistance) of a non-regular 2 × n hammock networks. The nodal voltage and equivalent resistance formulas for the 2 × n hammock networks are derived by using the general and specialized methods we describe for solving the various equations. In addition, we discuss the results of various special cases and derive some interesting results. To make it easier for the reader to understand, we have visualized what the potential function looks like. Our findings offer a fresh theoretical framework for the investigation of complicated network models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. S Kirkpatrick Rev. Mod. Phys. 45 574 (1973)

    Article  ADS  Google Scholar 

  2. L Q English, F Palmero, J F Stormes, J Cuevas et al Phys. Rev. E 88 022912 (2013)

    Article  ADS  Google Scholar 

  3. E N Bulgakov, D N Maksimov and A F Sadreev Phys. Rev. E 71 046205 (2005)

    Article  ADS  Google Scholar 

  4. A R McGurn Phys. Rev. B 61 13235 (2000)

    Article  ADS  Google Scholar 

  5. L Q English, F Palmero, P Candiani, J Cuevas et al Phys. Rev. Lett. 108 084101 (2012)

    Article  ADS  Google Scholar 

  6. V V Albert, L I Glazman and L Jiang Phys. Rev. Lett. 114 173902 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. A V Melnikov, M Shuba and P Lambin Phys. Rev. E 97 043307 (2018)

    Article  ADS  Google Scholar 

  8. A L Barabási, R Albert and H Jeong Physica A 272 173 (1999)

    Article  ADS  Google Scholar 

  9. G S Joyce J. Phys. A Math. Theor. 50 425001 (2017)

    Article  Google Scholar 

  10. D J Klein and M Randić J. Math. Chem. 12 81 (1993)

    Article  MathSciNet  Google Scholar 

  11. T F Chan and D C Resasco SIAM J. Sci. Comput. 8 14 (2006)

    Article  Google Scholar 

  12. L Borges and P Daripa J. Comput. Phys. 169 151 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Z Z Tan Chin. Phys. B 26 86 (2017)

    Google Scholar 

  14. J Cserti Am. J. Phys. 68 896 (2000)

    Article  ADS  Google Scholar 

  15. J H Asad J. Stat. Phys. 150 1177 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. M Q Owaidat and J H Asad Commun. Theor. Phys. 71 935 (2019)

    Article  ADS  Google Scholar 

  17. M Q Owaidat, R S Hijjawi and J M Khalifeh Phys. J. Plus 129 29 (2014)

    Article  Google Scholar 

  18. M Q Owaidat and J H Asad Eur. Phys. J. Plus 131 309 (2016)

    Article  Google Scholar 

  19. M Q Owaidat, J H Asad and Z Z Tan Results Phys. 12 1621 (2019)

    Article  ADS  Google Scholar 

  20. M Q Owaidat Eur. Phys. J. Plus 136 630 (2021)

    Article  Google Scholar 

  21. M Q Owaidat and J H Asad Indian J. Phys. 95 1381 (2021)

    Article  ADS  Google Scholar 

  22. F Y Wu J Phys A: Math Gen. 37 6653 (2004)

    Article  ADS  Google Scholar 

  23. W J Tzeng and F Y Wu J. Phys. A: Math. Gen. 39 8579 (2006)

    Article  ADS  Google Scholar 

  24. N S Izmailian and M C Huang Phys. Rev. E 82 011125 (2010)

    Article  ADS  Google Scholar 

  25. J W Essam and F Y Wu J. Phys A Math. Theor. 42 025205 (2009)

    Article  ADS  Google Scholar 

  26. N Chair Ann. Phys. 327 3116 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. N Chair Ann. Phys. 341 56 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. N Chair J. Stat. Phys. 154 1177 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  29. N S Izmailian, R Kenna and F Y Wu J. Phys. A: Math. Theor. 47 035003 (2014)

    Article  ADS  Google Scholar 

  30. N S Izmailian and R Kenna J. Stat. M-Theory E 09 P09016 (2014)

    Article  Google Scholar 

  31. N S Izmailian and R Kenna Chin. J. Phys. 53 040703 (2015)

    Google Scholar 

  32. Z Z Tan Resistance network model (Xian: Xidian University Press) (2011). (in Chinese)

    Google Scholar 

  33. Z Z Tan, J W Essam and F Y Wu Phys. Rev. E 90 012130 (2014)

    Article  ADS  Google Scholar 

  34. J W Essam, Z Z Tan and F Y Wu Phys. Rev. E 90 032130 (2014)

    Article  ADS  Google Scholar 

  35. Z Z Tan Chin. Phys. B 24 020503 (2015)

    Article  ADS  Google Scholar 

  36. Z Z Tan Phys. Rev. E 91 052122 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Z Z Tan Sci. Rep. 5 11266 (2015).

    Article  ADS  Google Scholar 

  38. Z Z Tan Chin. Phys. B 25 050504 (2016)

    Article  Google Scholar 

  39. Z Z Tan Commun. Theor. Phys. 67 280 (2017)

    Article  ADS  Google Scholar 

  40. J W Essam, N S Izmailyan et al Roy. Soc. Open Sci. 2 140420 (2015)

    Article  ADS  Google Scholar 

  41. Z Tan, Z Z Tan and L Zhou Commun. Theor. Phys. 69 610 (2018)

    Article  ADS  Google Scholar 

  42. Z Tan and Z Z Tan Sci. Rep. 8 9937 (2018)

    Article  ADS  Google Scholar 

  43. Z Tan, Z Z Tan and J X Chen Sci. Rep. 8 5798 (2018)

    Article  ADS  Google Scholar 

  44. Z Z Tan and Z Tan Acta. Phys. Sin. 69 020502 (2020)

    Article  Google Scholar 

  45. Z Z Tan and Z Tan Chin. Phys. B 29 080503 (2020)

    Article  ADS  Google Scholar 

  46. Z Z Tan and Z Tan Commun. Theor. Phys. 72 055001 (2020)

    Article  ADS  Google Scholar 

  47. Z Z Tan Results Phys. 47 106361 (2023)

    Article  Google Scholar 

  48. Z Z Tan Commun. Theor. Phys. 75 065701 (2023)

    Article  ADS  Google Scholar 

  49. X L Luo and Z Z Tan Phys. Scr. 98 045224 (2023)

    Article  ADS  Google Scholar 

  50. C P Chen and Z Z Tan Results Phys. 19 103399 (2020)

    Article  Google Scholar 

  51. X Y Fang and Z Z Tan Sci. Rep. 12 6158 (2022)

    Article  ADS  Google Scholar 

  52. H X Chen and Z Z Tan Phys. Scr. 95 085204 (2020)

    Article  ADS  Google Scholar 

  53. F H Luo and L J Luo Results Phys. 33 105160 (2022)

    Article  Google Scholar 

  54. L J Luo and F H Luo Int. J. Circ. Theor. Appl. 50 135 (2022)

    Article  Google Scholar 

  55. S Zhou, Z X Wang, Y Q Zhao and Z Z Tan Commun. Theor. Phys. 75 075701 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates (Grant No. 202210304006Z), and supported by the Jiangsu Training Programs of Innovation and Entrepreneurship for Undergraduates (Grant No. 202210304076Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Zhong Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JQ., Ji, WY. & Tan, ZZ. Electrical properties of a 2 × n non-regular hammock network. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03027-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03027-w

Keywords

Navigation