Skip to main content

Advertisement

Log in

Deformation Behavior, Microstructure and Mechanical Properties of new Al–Cu–Yb(Gd)–Mg–Mn–Zr Alloys

  • Published:
Metallurgist Aims and scope

Deformation behavior, microstructure and mechanical properties of Al–Cu–Yb(Gd)–Mg–Mn–Zr alloy sheets are investigated. Based upon results of processing maps, optimum regimes for thermomechanical treatment at temperatures of 490–540°C and speeds of 0.01–1 sec–1 are determined. Annealing of cold-rolled sheets at temperatures up to 180°C leads to predominance of a strengthening effect due to aging over weakening from polygonization. Annealing of alloy sheets for 1 h at 400°C forms a partly recrystallized structure with a clear reduction in hardness from 145 HV to 75 HV. After 2 hours of annealing at 150°C, alloy combines a high yield strength of 412–417 MPa, a tensile strength of 441–449 MPa, and a good relative elongation of 2.7–3.2%. Sheet hardening followed by aging makes it possible to increase ductility by up to 5–8%, while the yield strength is 300–306 MPa with tensile strength of 364–389 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. P. Snopinski, M. Król, T. Tański, D. Pakuła, and A. Kříž, “Effect of initial microstructure on hot deformation behavior of AlMg5Si2Mn alloy,” Materials Characterization, 177, 111167 (2021).

    Article  CAS  Google Scholar 

  2. C. Xu, H. He, Z. Xue, and L. Li, “A detailed investigation on the grain structure evolution of AA7005 aluminum alloy during hot deformation,” Materials Characterization, 171, 110801 (2021),

    Article  CAS  Google Scholar 

  3. O. Bembalge and S. Panigrahi, “Hot deformation behaviour and processing map development of cryorolled AA6063 alloy under compression and tension,” Intern. J. Mechanical Sci., 191, 106100 (2021).

    Article  Google Scholar 

  4. J. Miao, S. Sutton, and A. A. Luo, “Microstructure and hot deformation behavior of a new aluminum–lithium–copper based AA2070 alloy,” Mater. Sci. Eng.: A, 777, 139048 (2020).

  5. H. Wu, S. Wen, H. Huang, K. Gao, X. Wu, W. Wang, and Z. Nie, “Hot deformation behavior and processing map of a new type Al–Zn–Mg–Er–Zr alloy,” J. Alloys Compounds, 685, 869–880 (2016).

    Article  CAS  Google Scholar 

  6. E. Scharifi, U. Savaci, Z. Kavaklioglu, U. Weidig, S. Turan, and K. Steinhoff, “Effect of thermo-mechanical processing on quench induced precipitates morphology and mechanical properties in high strength AA7075 aluminum alloy,” Materials Characterization, 17, 111026 (2021).

    Article  Google Scholar 

  7. Y. Jiang, H. Ding, M. Cai, Y. Chen ,Y. Liu , and Y. Zhang, “Investigation into the hot forming-quenching integrated process with cold dies for high strength aluminum alloy,” Materials Characterization, 158, 109967 (2019).

    Article  CAS  Google Scholar 

  8. M. G. Khomutov, S. M. Amer, R. Y. Barkov, M. V. Glavatskikh, A. Y. Churyumov, and A. V. Pozdniakov,” Hot deformation behavior of novel Al-Cu-Y(Er)-Mg-Mn-Zr alloys,” Metals, 1, 1521 (2021).

  9. T. Krachan, B. Stel’makhovych, and Y. Kuz’ma, “The Y-Cu-Al system,” J. Alloys Compounds, 349, 134–139 (2003).

  10. L. Zhang, P. J. Masset, X. Tao, G. Huang, H. Luo, L. Liu, and Z. Jin, “Thermodynamic description of the Al–Cu–Y ternary system,” Calphad Comput. Coupling Phase Diagrams Thermochem., 35, 574–579.

  11. L. G. Zhang, L. B. Liu, G. H. Huang, H. Y. Qi, B. R. Jia, and Z. P. Jin, “Thermodynamic assessment of the Al–Cu–Er system,” Calphad Comput. Coupling Phase Diagrams Thermochem., 32, 527–534 (2008).

    Article  CAS  Google Scholar 

  12. L. Zhang, P. J. Masset, F. Cao, F. Meng, L. Liu, and Z. Jin, “Phase relationships in the Al-rich region of the Al–Cu–Er system,” J. Alloys Compounds, 509, 3822–3831 (2011).

    Article  CAS  Google Scholar 

  13. G. Huang, L. Liu, L. Zhang, and Z. Jin, “Thermodynamic description of the Al–Cu–Yb ternary system supported by first principles calculations,” J. Mining and Metallurgy, Section B: Metallurgy, 52, 177–183 (2016).

    Article  CAS  Google Scholar 

  14. N. A. Belov, A. V.,Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Proc. Materials Sci. Forum, 519–521, 395–400 (2006).

  15. N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Materialia, 55, 5473–5482 (2007).

    Article  CAS  Google Scholar 

  16. A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. and Techn. (UK), 34, 1489–1496 (2018).

    Article  CAS  Google Scholar 

  17. A. V. Pozdnyakov, R. Y. Barkov, Z. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Physics Metals and Metallography, 120, 614–619 (2019).

    Article  CAS  Google Scholar 

  18. S. M. Amer, R. Y. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Physics Metals and Metallography, 121, 476–482 (2020).

    Article  CAS  Google Scholar 

  19. S. M. Amer, R. Y. Barkov, and A. V. Pozdniakov, “Microstructure and mechanical properties of novel quasibinary Al–Cu–Yb and Al–Cu–Gd alloys,” Metals (Basel), 11, 1–11 (2021).

    Article  Google Scholar 

  20. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Techn., 36, 453–459 (2020).

    Article  CAS  Google Scholar 

  21. A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng.: A, 758, 28–35 (2019).

  22. S. M. Amer, A. V. Mikhaylovskaya, R. Yu. Barkov, A. D. Kotov, A. G. Mochugovskiy O. A. Yakovtseva, M. V. Glavatskikh, I. S. Loginova, S. V. Medvedeva, and A. V. Pozdniakov, “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM, 73, 3092–3101 (2021).

  23. O. I. Mamzurina, S. M. Amer, I. S. Loginova, M. V. Glavatskikh, A. G. Mochugovskiy, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Yb and Al–Cu–Gd alloys,” Metals (Basel), 12, 479 (2022).

  24. S. M. Amer, O. A. Yakovtseva, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. I. Bazlov, R. Yu. Barkov, and A. V. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Applied Sciences-Basel, 10(15), 5345 (2020).

    Article  CAS  Google Scholar 

  25. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr Alloy,” Physics Metals and Metallography, 121, No. 12, 1227–1232 (2020).

    Article  CAS  Google Scholar 

  26. S. M., Amer, O. I. Mamzurina, I. S. Loginova, M. V. Glavatskikh, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn addition on the phase composition and strengthening behavior of AlCuYbZr and AlCuGdZr alloys,” JOM, 74, No. 9, 3646–3654 (2022).

  27. S. M. Amer, R. Yu. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems,” Physics Metals and Metallography, 122, 908–914 (2021).

    Article  CAS  Google Scholar 

  28. S. M. Amer, R. Yu. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new wrought Al–Cu–Y- and Al–Cu–Er-based alloys,” Physics Metals and Metallography, B, 915–922 (2021).

  29. O. I. Mamzurina, S. M. Amer, M. V. Glavatskikh, R. Yu. Barkov, I. S. Loginova, and A. V. Pozdniakov, “Microstructure and mechanical properties of novel heat resistant cast Al–Cu–Yb(Gd)–Mg–Mn–Zr alloys,” Metals (Basel), 12, 2079 (2022).

  30. M. G. Khomutov, A. I. Bazlov, A. A. Tsar’kov, and A. Yu. Churyumov, “Simulation of flow stress of single-phase aluminium alloys of the Al–Mg, Al–Cu and Al–Zn systems in the process of hot deformation,” Metal Science and Heat Treatment, 55, 393–396 (2013).

  31. G. Krallics, Z. Bézi, and P. Bereczki, “Hot deformation properties of 8006 aluminium alloy,” in: Procedia Manufacturing, Vol. 37 (2019), pp. 174–181.

    Article  Google Scholar 

  32. Q. Wang, X. He, Y. Deng, J. Zhao, and X. Guo, “Experimental study of grain structures evolution and constitutive model of isothermal deformed 2A14 aluminum alloy,” J. Materials Research and Technology, 12, 2348–2367 (2021).

    Article  CAS  Google Scholar 

  33. H. Hallberg, A. Chamanfar, and N. E. Nanninga, “A constitutive model for the flow stress behavior and microstructure evolution in aluminum alloys under hot working conditions—with application to AA6099,” Applied Mathematical Modelling, 81, 253–262 (2019).

    Article  Google Scholar 

  34. A. Rudnytskyj, P. Simon, M. Jech, and C. Gachot, “Constitutive modelling of the 6061 aluminium alloy under hot rolling conditions and large strain ranges,” Material Design, 190, 108568 (2020).

    Article  CAS  Google Scholar 

  35. A. Yu. Churyumov, A. Mikhaylovskaya, A. I. Bazlov, A. A. Tsarkov, A. D. Kotov, and S. A. Aksenov, “Influence of Al3Ni crystallization origin particles on hot deformation behaviour of aluminium based alloys,” Philosophical Magazine, 97, 572–590 (2017).

    Article  CAS  Google Scholar 

  36. Y. Wu, C. Liu, H. Liao, J. Jiang, and A. Ma, “Joint effect of micro-sized Si particles and nano-sized dispersoids on the flow behavior and dynamic recrystallization of near-eutectic Al–Si based alloys during hot compression,” J. Alloys and Compounds, 856. 158072 (2021).

  37. A. Mikhaylovskaya, M. Ghayoumabadi, and A. Mochugovskiy, “Superplasticity and mechanical properties of Al–Mg–Si alloy doped with eutectic-forming Ni and Fe, and dispersoid forming Sc and Zr elements,” Mater. Sci. Eng.: A, 817, 141319 (2021).

  38. Z. Zhang, J. Hu, J. Teng, J. Chen, G. Zhao, F. Jiang, D. Fu, and H. Zhang, “Hot compression and industrial extrusion characteristics of an as-cast Al–10Sr master alloy,” J. Manufacturing Processes, 61, 481–491 (2021).

    Article  Google Scholar 

  39. S. Chankitmunkong, D. G. Eskin, and C. Limmaneevichitr, “Constitutive behavior of an AA4032 piston alloy with Cu and Er additions upon high-temperature compressive deformation,” Metal. Mater. Trans. A, 51, 467–481 (2019).

    Article  Google Scholar 

  40. Y. I. Kosov and V. Y. Bazhin, “Synthesis of an aluminum–erbium master alloy from chloride–fluoride melts,” Russian Metallurgy (Metally), 2, 139–148 (2018).

    Article  Google Scholar 

  41. S. Savchenkov, Y. Kosov, V. Bazhin, K. Krylov, and R. Kawalla, “Microstructural master alloys features of aluminum–erbium system,” Crystals, 11, No. 11, 1353 (2021).

    CAS  Google Scholar 

  42. Y. I. Kosov and V. Yu. Bazhin, “Features of phase formation during aluminothermal preparation of aluminum-erbium master alloy,” Metallurgist, 62, No. 5-6, 440–448 (2018).

    Article  CAS  Google Scholar 

  43. Y. I. Kosov and V. Yu. Bazhin, and V. G. Povarov, “Interaction of erbium fluoride with alkali metal chloride–fluoride melts in synthesizing an Al–Er master alloy,” Russian Metallurgy(Metally), 6, 539–544 (2018).

  44. Y. I. Kosov and V. Yu. Bazhin, “Preparation of novel Al–Er master alloys in chloride-fluoride melt,” Mater. Sci. Forum, 918, 21–27 (2018).

    Article  Google Scholar 

  45. V. Yu. Bazhin, S. A. Savchenkov, and N.A. Gordevnin, “Investigation of the ytterbium reduction process in the synthesis of Al–Yb master alloys for the modification of aluminum alloys,” Non-Ferrous Metals, 53, No. 2, 65–72 (2022).

    Article  Google Scholar 

  46. Z. Wan, L. Hu, Y. Sun, T. Wang, and Z. Li, “Hot deformation behavior and processing workability of a Ni-based alloy,” J. Alloys and Compounds, 769, 367–375 (2018).

    Article  CAS  Google Scholar 

  47. A. Yu. Churyumov, M. G. Khomutov, A. A. Tsar’kov, A. V. Pozdnyakov, A. N. Solonin, V. M. Efimov, and E. L. Mukhanov, “Study of the structure and mechanical properties of corrosion resistant steel with a high concentration of boron at elevated temperatures,” Physics Metals and Metallography, 115, 809–813 (2014).

  48. Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, and D. R. Barker, “Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242,” Met. Trans. A, 15, 1883–1892 (1984).

    Article  Google Scholar 

  49. M. G. Khomutov, A. V. Pozdniakov, A. Yu. Churyumov, A. N. Solonin, M. V. Glavatskikh, and R. Yu. Barkov, “Flow stress modelling and 3D processing maps of scandium contents,” Applied Sci., 11. 4587 (2021).

  50. B. Ke, L. Ye, J. Tang, Y. Zhang, S. Liu, H. Lin, Y. Dong, and X. Liu, “Hot deformation behavior and 3D processing maps of AA7020 aluminum alloy,” J. Alloys and Compounds, 845, 156113 (2020).

    Article  CAS  Google Scholar 

  51. Y. Sun, Z. Cao, Z. Wan, L. Hu, W. Ye, N. Li, and C. Fan, “3D processing map and hot deformation behavior of 6A02 aluminum alloy,” J. Alloys and Compounds, 742, 356–368 (2018).

    Article  CAS  Google Scholar 

  52. R. Wu, Y. Liu, C. Geng, Q. Lin, Y. Xiao, J. Xu, and W. Kang, “Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map,” J. Alloys and Compounds, 713, 212–221 (2017).

    Article  Google Scholar 

  53. GOST 21631–76. Aluminum Sheets and Aluminium Alloys, Technical Specifications [in Russian], Standartinform, Moscow (2008).

  54. GOST P-51834–2001. Bars, Extruded from Aluminium Alloys with High Strength and Increased Ductility. Technical Specifications [in Russian], IPK Izd. Standartov, Moscow (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Mamzurina.

Additional information

Translated from Metallurg, Vol. 67, No. 8, pp. 48–56, August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamzurina, O.I., Amer, S.M., Glavatskikh, M.V. et al. Deformation Behavior, Microstructure and Mechanical Properties of new Al–Cu–Yb(Gd)–Mg–Mn–Zr Alloys. Metallurgist 67, 1127–1137 (2023). https://doi.org/10.1007/s11015-023-01604-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-023-01604-2

Keywords

Navigation