Skip to main content
Log in

Constitutive phytochemicals in Brassica juncea (L.) Czern & Coss. in relation to biological fitness of Lipaphis erysimi (Kaltenbach)

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The study aimed to decipher the variation in constitutive plant biochemicals, and their influence on development, reproduction and survival of Lipaphis erysimi (Kaltenbach) (Aphididae: Hemiptera) on diverse Brassica juncea (L.) Czern & Coss. (Brassicales) cultivars. These studies revealed significant differences in total nymphal, reproductive and developmental periods, fecundity and offspring survival of L. erysimi on the test B. juncea cultivars. Toal developmental period was significantly longer, while fecundity and survival were lower on Pusa Mustard 27, NRCHB 101, RLC 3, RH 749, RH 725, DRMR 150-35, Pusa Mustard 26 and Pusa Mustard 25, except in a few cases. Further, total protein, antioxidants, tannins, phenols, FRAP, glucosinolates, photosynthetic pigments and different enzymes tested were significantly higher, and total sugars lower in Pusa Mustard 32, Pusa Mustard 30, NRCHB 101, RLC 3, DRMR 150-35, Pusa Mustard 26 and Pusa Mustard 27 as compared to other B. juncea cultivars, except in a few cases. Total sugars exhibited significant and positive association with survival of L. erysimi, while total protein, ferric ion reducing power, chlorophyll A, carotenoids, catalase, phenyl ammonia lyase and tyrosine ammonia lyase showed significant and negative correlation with survival of L. erysimi. Further, the biochemical constituents suggested 94.99, 95.88, 95.30, 97.06 and 84.75% variation in total nymphal, reproductive and total developmental periods, fecundity and survival of the L. erysimi on the test B. juncea cultivars, respectively. Overall, DRMR 150-35, RLC 3, NRCHB 101 and Pusa Mustard 26 have higher amounts of anti-nutritional defence compounds and antioxidative enzymes, distress the growth and survival of L. erysimi, and thus could be deployed in Brassica improvement programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data have been reported in the manuscript.

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ali MB, Yu KW, Hahn EJ, Paek KY (2005) Differential responses of anti-oxidants enzymes, lipoxygenase activity, ascorbate content and the production of saponins in tissue cultured root of mountain Panax ginseng CA Mayer and Panax quinquefolium L. in bioreactor subjected to methyl jasmonate stress. Plant Sci 169(1):83–92

    Article  CAS  Google Scholar 

  • Alvarez AE, Tjallingii WF, Garzo E, Vleeshouwers V, Dicke M, Vosman B (2006) Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to the aphid Myzus persicae. Entomol Exp Appl 121:145–157

    Article  Google Scholar 

  • Amjad MD, Peters C (1992) Survival, development and reproduction of turnip aphids (Homoptera: Aphididae) on oilseeds Brassica. J Econ Entomol 85:2003–2007

    Article  Google Scholar 

  • Amorim LC, Nasciment JE, Monteiro JM, Sobrinho JS, Araujo AS, Albuquerque UP (2008) A simple and accurate procedure for the determination of tannin and flavonoid levels and some applications in ethnobotany and ethnopharmacology. Func Ecos and Com 2:88–94

    Google Scholar 

  • Anjali SK, Tulasi K, Rajneesh T, Arutselvan R, Abhijeet SK, Yasser N, Victor C, Tatiana M, Chetan K (2023) Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 1:100154

    Article  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase–a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85:235

    Article  CAS  Google Scholar 

  • Badenes-Perez FR, Shelton AM, Nault BA (2004) Plant glucosinolate content increases susceptibility to diamondback moth (Lepidoptera: Plutellidae) regardless of its diet. J Econ Entomol 97(4):1365–1372

    Article  PubMed  Google Scholar 

  • Badenes-Perez FR, Gershenzon J, Heckel DG (2020) Plant glucosinolate content increases susceptibility to diamondback moth (Lepidoptera: Plutellidae) regardless of its diet. J Pest Sci 93:491–506

    Article  Google Scholar 

  • Barakat N, Makris DP, Kefalas P, Psillakis E (2010) Removal of olive mill waste water phenolics using a crude peroxidase extract from onion by-products. Environ Chem Lett 8:271–275

    Article  CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1999) Ferric reducing /antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth Enzymol 299:15–27

    Article  CAS  Google Scholar 

  • Bhadoria NS, Jakhmola SS, Dhamdhere SV (1995) Relative susceptibility of mustard cultivars to Lipaphis erysimi in North West Madhya Pradesh (India). J Entomol Res 19:143–146

    Google Scholar 

  • Bhoi TK, Trivedi N, Kumar H, Tanwar AK, Dhillon MK (2021) Biochemical defense in maize against Chilo partellus (Swinhoe) through activation of enzymatic and nonenzymatic antioxidants. Indian J Exp Biol 59(01):54–63

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cole RA (1994) Locating a resistance mechanism to the cabbage aphid in two wild Brassicas. Entomol Exp Appl 71(1):23–31

    Article  Google Scholar 

  • Costa C, Dwyer LM, Dutilleul P, Stewart DW, Ma BL, Smith DL (2001) Inter-relationships of applied nitrogen, SPAD, and yield of leafy and non-leafy maize genotypes. J Plant Nutr 24(8):1173–1194

    Article  CAS  Google Scholar 

  • Dhillon MK, Chaudhary DP (2015) Biochemical interactions for antibiosis mechanism of resistance to Chilo partellus (Swinhoe) in different maize types. Arthropod Plant Interact 9(4):373–382

    Article  Google Scholar 

  • Dhillon MK, Kumar S (2017) Amino acid profiling of Sorghum bicolor vis-à-vis Chilo partellus (Swinhoe) for biochemical interactions and plant resistance. Arthropod Plant Interact 11:537–550

    Article  Google Scholar 

  • Dhillon MK, Kumar S (2020) Lipophilic profiling of Sorghum bicolor (L.) seedlings vis-à-vis Chilo partellus (Swinhoe) larvae reveals involvement of biomarkers in sorghum-stem borer interactions. Indian J Exp Biol 58(2):95–108

    CAS  Google Scholar 

  • Dhillon MK, Singh N, Tanwar AK, Yadava DK, Vasudeva S (2018) Standardization of screening techniques for resistance to Lipaphis erysimi (Kalt.) in rapeseed-mustard under field conditions. Indian J Exp Biol 56:674–685

    CAS  Google Scholar 

  • Dhillon SS, Kumar PR, Gupta N (1992) Breeding objectives and methodologies. In: Chopra VL, Vikas S (eds) Oil Seed Brassicas in Indian Agriculture. Vikas Publishing House, New Delhi, pp 8–20

    Google Scholar 

  • Dhillon MK, Singh N, Yadava DK (2022) Preventable yield losses and management of mustard aphid, Lipaphis erysimi (Kaltenbach) in different cultivars of Brassica juncea (L.) Czern & Coss. Crop Prot 161:106070

  • Diallinas G, Pateraki I, Sanmartin M, Scossa A, Stilianou E (1997) Melon ascorbate oxidase: cloning of a multigene family, induction during fruit development and repression by wounding. Plant Mol Biol 34:759–770

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Emden HV (1977) Failure of the aphid, Myzus persicae, to compensate for poor diet during early growth. Physiol Entomol 2(1):53–58

    Article  Google Scholar 

  • Fanizza G, Ricciardi L, Bagnulo C (1991) Leaf greenness measurements to evaluate water stressed genotypes in Vitis vinifera. Euphytica 55:27–32

    Article  Google Scholar 

  • Feeny P (1977) Defensive ecology of the Cruciferae. Ann Mo Bot Gard 1:221–234

    Article  Google Scholar 

  • Fritz RR, Hodcins DS, Abell CW (1976) Phenylalanine ammonia lyase induction and purification from yeast and clearance in mammals. J Biol Chem 251(15):4646–4650

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19(7):711–724

  • Holopainen JK, Blande JD (2013) Where do herbivore-induced plant volatiles go? Front Plant Sci 4:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkins WG, Hüner NPA (eds) (2004) Introduction to plant physiology. John Wiley & Sons, London

    Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Song S (2013) Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process. Plant Physiol Biochem 68:61

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Sharma HC, Dhillon MK (2013) Bridging conventional and molecular genetics of sorghum insect resistance. In: Paterson AK (ed) Plant Genetics and Genomics: Crops and Models. Springer, New York, p 367

    Google Scholar 

  • Joseph S, Peter KV (2007) Non preference mechanism of aphid (Aphis craccivora Koch) resistance in cowpea. Legum Res 30(2):79–85

    Google Scholar 

  • Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM (2003) Light perception in plant disease defence signalling. Curr Opin Plant Biol 6:390–396

    Article  CAS  PubMed  Google Scholar 

  • Kraling K, Röbbelen G, Thies W, Herrmann M, Ahmadi MR (1990) Variation of seed glucosinolates in lines of Brassica napus. Plant Breed 105(1):33–39

    Article  Google Scholar 

  • Kumar S, Banga SS (2017) Breeding for aphid resistance in rapeseed-mustard. In: Arora R, Sandhu S (eds) Breeding Insect Resistant Crops for Sustainable Agriculture. Springer, Singapore, pp 171–199

    Chapter  Google Scholar 

  • Kumar A, Yadav S, Ahlawat N, Yadav J (2020) Biochemical basis of resistance to mustard aphid Lipaphis erysimi (Kaltenbach). Indian J Entomol 82(4):875–879

    Article  Google Scholar 

  • Kumar S, Sangha MK (2013) Biochemical mechanism of resistance in some Brassica genotypes against Lipaphis erysimi (Kaltenbach) (Homoptera: Aphidiae). Vegetos 26(2):387–395

    Article  Google Scholar 

  • Lawson T, Craigon J, Tulloch AM, Black CR, Colls JJ, Landon G (2001) Photosynthetic responses to elevated CO2 and ozone in field-grown potato (Solanum tuberosum). J Plant Physiol 158:309–323

    Article  CAS  Google Scholar 

  • Le Roux V, Dugravot S, Brunissen L, Vincent C, Pelletier Y, Giordanengo P (2010) Antixenosis phloem-based resistance to aphids: is it the rule? Ecol Entomol 35(4):407–416

    Article  Google Scholar 

  • Lerin J (1986) Influence des substances alleochimiques des cruciferes sur les insectes. Acta Oecol 1:215–235

    Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12:310

    Article  CAS  PubMed  Google Scholar 

  • Mishra VK, Singh NN, Prakash P (2019) Evaluate biochemical mechanism resistance against mustard aphid, Lipaphis erysimi (Kalt) on mustard crop. J Exp Zool India 22(1):325–328

    Google Scholar 

  • Moon MS (1967) Phagostimulation of a monophagous aphid. Oikos 1:96–101

    Article  ADS  Google Scholar 

  • Narang DD (1982) Studies on the basis of resistance in Brassica campestris var. yellow sarson, B. juncea and Eruca sativa to mustard aphid, Lipaphis erysimi (Kaltenbach). Doctoral dissertation, Ph. D. Dissertation, Punjab Agricultural University, Ludhiana. 103 p

  • Nault LR, Styer WE (1972) Effects of sinigrin on host selection by aphids part-1. Entomol Exp Appl 15(4):423–437

    Article  CAS  Google Scholar 

  • Nayek S, Choudhury IH, Jaishee N, Suprakash R (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. J Chem Sci 4(9):63–69

    Google Scholar 

  • Piekarska A, Kusznierewicz B, Meller M, Dziedziul K, Namieśnik J, Bartoszek A (2013) Myrosinase activity in different plant samples; optimisation of measurement conditions for spectrophotometric and pH-stat methods. Ind Crops Prod 50:58–67

    Article  CAS  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341

    Article  CAS  PubMed  Google Scholar 

  • Rana JS (2005) Performance of Lipaphis erysimi (Homoptera: Aphididae) on different Brassica species in a tropical environment. J Pest Sci 78(3):155–160

    Article  Google Scholar 

  • Rehman F, Khan FA, Anis SB (2014) Assessment of aphid infestation levels in some cultivars of mustard with varying defensive traits. Arch Phytopathol 47(15):1866–1874

    Article  Google Scholar 

  • Ridges M, Jones AME, Bones AM, Hodgson C, Bartlet CR, Wallsgrove R, Karapapa VK, Watts N, Rossiter JT (2002) Spatial organization of the glucosinolate–myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc Royal Soc Lond. B 269:187–191

    Article  Google Scholar 

  • Samal I, Dhillon MK, Singh N (2021) Biological performance and biochemical interactions of mustard aphid (Lipaphis erysimi) in Brassica juncea. Indian J Agric Sci 91(9):1347–1352

    CAS  Google Scholar 

  • Samal I, Singh N, Bhoi TK, Dhillon MK (2022) Elucidating effect of different photosynthetic pigments on Lipaphis erysimi preference and population build-up on diverse Brassica juncea genotypes. Ann Appl Biol 181(2):201–214

    Article  CAS  Google Scholar 

  • Samdur MY, Singh AL, Mathur RK, Manivel P, Chikani BM, Gor HK, Khan MA (2000) Field evaluation of chlorophyll meter for screening groundnut (Arachis hypogaea L.) genotypes tolerant to iron-deficiency chlorosis. Curr Sci 79:211–214

    Google Scholar 

  • Sau AK, Dhillon MK, Trivedi N (2022) Activation of antioxidant defense in maize in response to attack by Sesamia inferens (Walker). Phytoparasitica 50(5):1043–1058

    Article  CAS  Google Scholar 

  • Sekhon BS, Ahman I (1993) Insect resistance with special reference to mustard aphid. In: Labana KS, Banga SS, Banga SK (eds) Breeding Oilseed Brassicas. Springer, Berlin, pp 206–217

    Chapter  Google Scholar 

  • Sharma HC, Sujana G, Manohar Rao D (2009) Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeon pea. Arthropod Plant Interact 3:151–161

    Article  Google Scholar 

  • Singh CP, Viswakannan P, Singh SP, Chhibber RC (2003) Relationship between glucosinolates and the population of Lipaphis erysimi on Brassica spp. Bulletin GCIRC 20:79–82

    Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic- phosphotungestic acid reagents. Am J Enol Vitic 16:144–158

    Article  CAS  Google Scholar 

  • Soybean Processors Association of India [SOPA] (2020) India oilseeds-area, production and productivity. The soybean processors association of India. http://www.sopa.org/india-oilseeds-area-production-and-productivity. Accessed 1 Aug 2023

  • Stahl E, Hilfiker O, Reymond P (2018) Plant–arthropod interactions: who is the winner? Plant J 93(4):703–728

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Voorrips RE, Steenhuis-Broers G, van’t Westende W, Vosman B (2018) Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. MC Plant Biol 18(1):1–14

    CAS  Google Scholar 

  • Takamiya K, Tsuchiya T, Ohta H (2000) Degradation pathway(s) of chlorophyll: What has gene cloning revealed? Trends Plant Sci 5:426–431

    Article  CAS  PubMed  Google Scholar 

  • Thorpe TA, Beaudoin-Eagan LD (1985) Tyrosine and Phenylalanine ammonia lyase activities during shoot Initiation in tobacco callus cultures. Plant Physiol 78:438–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Wensler RJD (1962) Mode of host selection by an aphid. Nature 195(4843):830–831

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank ICAR-IARI, New Delhi for research facilities, post-graduate school, IARI, New Delhi for academic support, and CSIR-HRDG, New Delhi for providing fellowship to the first author during PhD degree programme.

Author information

Authors and Affiliations

Authors

Contributions

MKD and NS conceived and designed the study. KC, MKD, NS and AKT executed the experiments. KC, MKD and AKT curated the data. KC, and AKT analyzed the data. The first draft of the manuscript was written by KC and AKT. MKD, NS commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mukesh K. Dhillon.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Ingeborg Menzler-Hokkanen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrakumara, K., Dhillon, M.K., Tanwar, A.K. et al. Constitutive phytochemicals in Brassica juncea (L.) Czern & Coss. in relation to biological fitness of Lipaphis erysimi (Kaltenbach). Arthropod-Plant Interactions 18, 227–239 (2024). https://doi.org/10.1007/s11829-023-10023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-023-10023-8

Keywords

Navigation