Skip to main content
Log in

The inclusion of the epithelium in numerical models of the human cornea

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

We present a patient-specific finite element model of the human cornea that accounts for the presence of the epithelium. The thin anterior layer that protects the cornea from the external actions has a scant relevance from the mechanical point of view, and it has been neglected in most numerical models of the cornea, which assign to the entire cornea the mechanical properties of the stroma. Yet, modern corneal topographers capture the geometry of the epithelium, which can be naturally included into a patient-specific solid model of the cornea, treated as a multi-layer solid. For numerical applications, the presence of a thin layer on the anterior cornea requires a finer discretization and the definition of two constitutive models (including the corresponding properties) for stroma and epithelium. In this study, we want to assess the relevance of the inclusion of the epithelium in the model of the cornea, by analyzing the effects in terms of uncertainties of the mechanical properties, stress distribution across the thickness, and numerical discretization. We conclude that if the epithelium is modeled as stroma, the material properties should be reduced by 10%. While this choice represents a sufficiently good approximation for the simulation of in vivo mechanical tests, it might result into an under-estimation of the postoperative stress in the simulation of refractive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agca A, Ozgurhan EB, Demirok A, Bozkurt E, Celik U, Ozkaya A, Cankaya I, Yilmaz OF (2014) Comparison of corneal hysteresis and corneal resistance factor after small incision lenticule extraction and femtosecond laser-assisted lasik: a prospective fellow eye study. Contact Lens Anterior Eye 37(2):77–80

    Article  Google Scholar 

  • Alastrué V, Calvo B, Peña E, Doblaré M (2006) Biomechanical modeling of refractive corneal surgery. J Biomech Eng 128(1):150–160

    Article  Google Scholar 

  • Ariza-Gracia MÁ, Ortillés Á, Cristóbal JÁ, Rodríguez Matas JF, Calvo B (2017) A numerical-experimental protocol to characterize corneal tissue with an application to predict astigmatic keratotomy surgery. J Mech Behav Biomed Mater 74:304–314

    Article  Google Scholar 

  • Bongiorno T, Chojnowski JL, Lauderdale JD, Sulchek T (2016) Cellular stiffness as a novel stemness marker in the corneal limbus. Biophys J 111(8):1761–1772

    Article  Google Scholar 

  • Bryant MR, Marchi V, Juhasz T (2000) Mathematical models of picosecond laser in situ keratomileusis for high myopia. J Refract Surg 16:155–162

    Article  Google Scholar 

  • Bryant MR, McDonnell PJ (1996) Constitutive laws for biomechanical modeling of refractive surgery. J Biomech Eng

  • Cabrera Fernandez D, Niazy AM, Kurtz RM, Djotyan GP, Juhasz T (2005) Finite element analysis applied to cornea reshaping. J Biomed Optics 10(6):064018

    Article  Google Scholar 

  • Deenadayalu C, Mobasher B, Rajan SD, Hall GW (2006) Refractive change induced by the LASIK flap in a biomechanical finite element model

  • Elsheikh A, McMonnies CW, Whitford C, Boneham GC (2015) In vivo study of corneal responses to increased intraocular pressure loading. Eye and Vision, 2(1), All Open Access. Gold Open Access, Green Open Access

  • Elsheikh A, Ross S, Alhasso D, Rama P (2009) Numerical study of the effect of corneal layered structure on ocular biomechanics. Curr Eye Res 34(1):26–35

    Article  Google Scholar 

  • Falgayrettes N, Patoor E, Cleymand F, Zevering Y, Perone JM (2023) Biomechanics of keratoconus: two numerical studies. PLoS ONE

  • Jayasuriya AC, Scheinbeim JI, Lubkin V, Bennett G, Kramer P (2003) Piezoelectric and mechanical properties in bovine cornea. J Biomed Mater Res A 66A:260–265

    Article  Google Scholar 

  • Last JA, Liliensiek SJ, Nealey PF, Murphy CJ (2009) Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. J Struct Biol 167(1):19–24

    Article  Google Scholar 

  • Last JA, Thomasy SM, Croasdale CR, Russell P, Murphy CJ (2012) Compliance profile of the human cornea as measured by atomic force microscopy. Micron 43(12):1293–1298

    Article  Google Scholar 

  • Masterton S, Ahearne M (2018) Mechanobiology of the corneal epithelium. Exp Eye Res 177:122–129

    Article  Google Scholar 

  • Meek KM, Boote C (2009) The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Prog Retin Eye Res 28(5):369–392

    Article  Google Scholar 

  • Montanino A, Angelillo M, Pandolfi A (2019) A 3d fluid-solid interaction model of the air puff test in the human cornea. J Mech Behav Biomed Mater 94:22–31

    Article  Google Scholar 

  • Montanino A, Gizzi A, Vasta M, Angelillo M, Pandolfi A (2018) Modeling the biomechanics of the human cornea accounting for local variations of the collagen fibril architecture. ZAMM-J Appl Math Mech /Zeitschrift für Angewandte Mathematik und Mechanik 98(12):2122–2134

    Article  MathSciNet  Google Scholar 

  • Montanino A, Pandolfi A (2020) On the recovery of the stress-free configuration of the human cornea. Modell Artif Intell Ophthalmol 4:11–33

    Google Scholar 

  • Montanino A, van Overbeeke S, Pandolfi A (2023) Modelling the biomechanics of laser corneal refractive surgery. J Mech Behavior Biomed Mater, 105998

  • Pandolfi A, Boschetti F (2015) The influence of the geometry of the porcine cornea on the biomechanical response of inflation tests. Comput Methods Biomech Biomed Engin 18(1):64–77

    Article  Google Scholar 

  • Pandolfi A, Manganiello F (2006) A model for the human cornea: constitutive formulation and numerical analysis. Biomech Model Mechanobiol 5(4):237–246

    Article  Google Scholar 

  • Pandolfi A, Vasta M (2012) Fiber distributed hyperelastic modeling of biological tissues. Mech Mater 44:151–162

    Article  Google Scholar 

  • Petsche SJ, Pinsky PM (2013) The role of 3-d collagen organization in stromal elasticity: a model based on X-ray diffraction data and second harmonic-generated images. Biomech Model Mechanobiol 12:1101–1113

    Article  Google Scholar 

  • Sánchez P, Moutsouris K, Pandolfi A (2014) Biomechanical and optical behavior of human corneas before and after photorefractive keratectomy. J Cataract Refract Surg 40(6):905–917

    Article  Google Scholar 

  • Seven I, Vahdati A, Pedersen IB, Vestergaard A, Hjortdal J, Roberts CJ, Dupps WJ (2017) Contralateral eye comparison of smile and flap-based corneal refractive surgery: computational analysis of biomechanical impact. J Refract Surg 33(7):444–453

    Article  Google Scholar 

  • Simonini I, Pandolfi A (2015) Customized finite element modelling of the human cornea. PLoS ONE 10(6):e0130426

    Article  Google Scholar 

  • Sinha-Roy A, Dupps WJ (2009) Effects of altered corneal stiffness on native and postoperative LASIK corneal biomechanical behavior: a whole-eye finite element analysis. J Refract Surg 25(10):875–887

    Article  Google Scholar 

  • Sinha-Roy A, Dupps W. J (2011) Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. J Biomech Eng, 133(1),

  • Sinha-Roy A, Dupps WJ, Roberts CJ (2014) Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: finite-element analysis. J Cataract Refract Surg 40(6):971–980

    Article  Google Scholar 

  • Straehla JP, Limpoco FT, Dolgova NV, Keselowsky BG, Sawyer WG, Perry SS (2010) Nanomechanical probes of single corneal epithelial cells: shear stress and elastic modulus. Tribol Lett 38:107–113

    Article  Google Scholar 

  • Studer HP, Riedwyl H, Amstutz CA, Hanson James VM, Büchler P (2013) Patient-specific finite-element simulation of the human cornea: a clinical validation study on cataract surgery. J Biomech 46(4):751–758

    Article  Google Scholar 

  • Thomasy SM, Raghunathan VK, Winkler M, Reilly CM, Sadeli AR, Russell P, Jester JV, Murphy CJ (2014) Elastic modulus and collagen organization of the rabbit cornea: epithelium to endothelium. Acta Biomater 10(2):785–791

    Article  Google Scholar 

  • Torres-Netto EA, Hafezi F, Spiru B, Gilardoni F, Hafezi NL, Gomes JAP, Randleman JB, Sekundo W, Kling S (2021) Contribution of bowman layer to corneal biomechanics. J Cataract Refract Surg 47(7):927–932

    Article  Google Scholar 

  • Whitford C, Studer H, Boote C, Meek KM, Elsheikh A (2015) Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density. J Mech Behav Biomed Mater 42:76–87

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the iVis Technologies, Taranto, is gratefully acknowledged. A special thank goes to Giuseppe D’Ippolito and Giuseppe Criscenti. The research has been developed under the auspices of the Italian National Group of Physics–Mathematics (GNFM) of the Italian National Institution of High Mathematics “Francesco Severi” (INDAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pandolfi.

Appendix A: Constitutive model of the stroma

Appendix A: Constitutive model of the stroma

We model the stroma as a hyperelastic composite, made of an elastic matrix (made of proteoglycans) reinforced with two sets of dispersed collagen fibrils (Pandolfi and Vasta 2012). The uncertainty of the fibril orientation is described with a von Mises distribution (Pandolfi and Vasta 2012) about a main orientation \({\textbf{a}}_M\), with \(M=1,2\). The strain energy density is assumed to decompose additively into volumetric, isotropic–isochoric, and anisotropic–isochoric parts in the form

$$\begin{aligned} \Psi = \Psi _\textrm{vol}(J) + \Psi _\textrm{iso}(\overline{I}_1, \overline{I}_2) + \Psi _\textrm{aniso}({\overline{I}^*_{4\, M}}, {\sigma ^2_{I_4\, M}}) \,, \end{aligned}$$

where \({\textbf{F}}= d{\textbf{x}}/d{\textbf{X}}\) is the deformation gradient, \({\textbf{x}}\) are the current coordinates and \({\textbf{X}}\) the reference coordinates, and \(J = \det {\textbf{F}}\) is the Jacobian determinant. \({\overline{\textbf{C}}}={\overline{\textbf{F}}}^T {\overline{\textbf{F}}}=J^{-2/3}{\textbf{F}}^T{\textbf{F}}\) is the isochoric Cauchy–Green deformation tensor, and \({\overline{I}_1}\) and \({\overline{I}_2}\) are the first and the second invariants of \({\overline{\textbf{C}}}\),

$$\begin{aligned} {\overline{I}_1}= \textrm{tr} {\overline{\textbf{C}}}\,, \qquad {\overline{I}_2}= 1/2\left[ (\textrm{tr}{\overline{\textbf{C}}})^2 - \textrm{tr}{\overline{\textbf{C}}}^2)\right] \,, \end{aligned}$$

where \(\mathrm tr (.)\) denotes the trace operator. The average pseudo-invariant \({\overline{I}^*_{4\, M}}\) is defined as

$$\begin{aligned} {\overline{I}^*_{4\, M}}= \left[ \kappa _M {\textbf{I}}+ (1 - 3\kappa _M) {\textbf{a}}_M \otimes {\textbf{a}}_M \right] : {\overline{\textbf{C}}}\end{aligned}$$

where \(\kappa _M\) is a dispersion parameter, \(\otimes \) is the tensor product, and ( : ) is the double contraction product. The variance operator \({\sigma ^2_{I_4\, M}}\) is defined as

$$\begin{aligned} {\sigma ^2_{I_4\, M}}={\overline{\textbf{C}}}:{\textbf{a}}_M\otimes {\textbf{a}}_M\otimes {\textbf{a}}_M\otimes {\textbf{a}}_M:{\overline{\textbf{C}}}- {\overline{I}^*_{4\, M}}\end{aligned}$$

The mathematical form of the energies are

$$\begin{aligned} \Psi _\textrm{vol}= & {} \dfrac{1}{4} K \left( J^2 - 1 - 2 \log J \right) \,, \\ \Psi _\textrm{iso}= & {} \dfrac{1}{2} \left[ \mu _1 \left( {\overline{I}_1}-3 \right) + \mu _2 \left( {\overline{I}_2}-3 \right) \right] \,, \quad \mu _1 + \mu _2 = \mu \,, \\ \Psi _\textrm{aniso}= & {} \sum _{M=1}^2\dfrac{k_{1\,M}}{2~k_{2\,M}} \left[ \exp D^*\left( {\overline{I}^*_{4\, M}}\right) - 1 \right] \left( 1 + K^* {\sigma ^2_{I_4\, M}}\right) \,, \end{aligned}$$

where K is the bulk modulus, \(\mu = \mu _1 + \mu _2\) is the shear modulus of the soft isotropic matrix, while \(k_{1\,M}\) (stiffness-like parameter) and \(k_{2\,M}\) (dimensionless rigidity parameters) control the mechanical response of the reinforcing fibers at low and high strains, respectively. The coefficient \(D^*({\overline{I}^*_{4\, M}})\) reads

$$\begin{aligned} D^*\left( {\overline{I}^*_{4\, M}}\right) = k_{2\,M}\left( {\overline{I}^*_{4\, M}}- 1 \right) ^2 \,, \end{aligned}$$

and the coefficient \(K^*\)

$$\begin{aligned} k^* = k_{2\,M} \left[ 1 + 2D^*\left( {\overline{I}^*_{4\, M}}\right) \right] \,. \end{aligned}$$

The model parameters are seven: five with the dimension of a stiffness (shear elastic moduli), i.e., K, \(\mu _1\), \(\mu _2\), \(k_{1\,1}\), \(k_{1\,2}\) , and two dimensionless rigidity coefficients \(k_{2\,1}\), \(k_{2\, 2}\). The interested reader is referred to the original work (Pandolfi and Vasta 2012).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montanino, A., Pandolfi, A. The inclusion of the epithelium in numerical models of the human cornea. Biomech Model Mechanobiol (2023). https://doi.org/10.1007/s10237-023-01801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10237-023-01801-7

Keywords

Navigation