Skip to main content
Log in

Modular phenomena for regularized double zeta values

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate linear relations among regularized motivic iterated integrals on ℙ1 ∖ {0, 1, ∞} of depth two, which we call regularized motivic double zeta values. Some mysterious connections between motivic multiple zeta values and modular forms are known, e.g., Gangl–Kaneko–Zagier relation for the totally odd double zeta values and Ihara–Takao relation for the depth graded motivic Lie algebra. In this paper, we investigate so-called non-admissible cases and give many new Gangl–Kaneko–Zagier type and Ihara–Takao type relations for regularized motivic double zeta values. Specifically, we construct linear relations among a certain family of regularized motivic double zeta values from odd period polynomials of modular forms for the unique index two congruence subgroup of the full modular group. This gives the first non-trivial example of a construction of the relations among multiple zeta values (or their analogues) from modular forms for a congruence subgroup other than the SL2(ℤ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bachmann, Modular forms and q-analogues of modified double zeta values, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 90 (2020), 201–213.

    Article  MathSciNet  Google Scholar 

  2. S. Baumard and L. Schneps, Period polynomial relations between double zeta values, Ramanujan Journal 32 (2013), 83–100.

    Article  MathSciNet  Google Scholar 

  3. D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Physics Letters. B 393 (1997), 403–412.

    Article  MathSciNet  Google Scholar 

  4. J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortschritte der Physik 61 (2013), 812–870.

    Article  MathSciNet  Google Scholar 

  5. F. Brown, Mixed Tate motives over ℤ, Annals of Mathematics 175 (2012), 949–976.

    Article  MathSciNet  Google Scholar 

  6. F. Brown, Depth-graded motivic multiple zeta values, Compositio Mathematica 157 (2021), 529–572.

    Article  MathSciNet  Google Scholar 

  7. F. Brown, Motivic periods and ℙ1 ∖ {0, 1, ∞}, in Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 295–318.

    Google Scholar 

  8. F. Brown, Zeta elements in depth 3 and the fundamental Lie algebra of the infinitesimal Tate curve, Forum of Mathematics. Sigma 5 (2017), Article no. e1.

  9. P. Deligne and A. B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Annales Scientifiques de l’Ecole Normale Supérieure 38 (2005), 1–56.

    Article  MathSciNet  Google Scholar 

  10. H. Gangl, M. Kaneko and D. Zagier, Double zeta values and modular forms, in Auto-morphic Forms and Zeta Functions, World Scientific, Hackensack, NJ, 2006, pp. 71–106.

    Chapter  Google Scholar 

  11. A. B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Mathematical Journal 128 (2005), 209–284.

    Article  MathSciNet  Google Scholar 

  12. Y. Ihara, Some arithmetic aspects of Galois actions in the pro-p fundamental group of1 − {0, 1, ∞}, in Arithmetic Fundamental Groups and Noncommutative Algebra (Berkeley, CA, 1999), Proceedings of Symposia in Pure Mathematics, Vol. 70, American Mathematical Society, Providence, RI, 2002, pp. 247–273.

    Chapter  Google Scholar 

  13. M. Kaneko and K. Tasaka, Double zeta values, double Eisenstein series, and modular forms of level 2, Mathematische Annalen 357 (2013), 1091–1118.

    Article  MathSciNet  Google Scholar 

  14. T. T. Q. Le and J. Murakami, Kontsevich’s integral for the Kauffman polynomial, Nagoya Mathematical Journal 142 (1996), 39–65.

    Article  MathSciNet  Google Scholar 

  15. T. Q. T. Le and J. Murakami, Kontsevich’s integral for the Homfiy polynomial and relations between values of multiple zeta functions, Topology and its Applications 62 (1995), 193–206.

    Article  MathSciNet  Google Scholar 

  16. T. Q. T. Le and J. Murakami, The universal Vassiliev–Kontsevich invariant for framed oriented links, Compositio Mathematica 102 (1996), 41–64.

    MathSciNet  Google Scholar 

  17. J. Li, The depth structure of motivic multiple zeta values, Mathematische Annalen 374 (2019), 179–209.

    Article  MathSciNet  Google Scholar 

  18. J. Li and F. Liu, Motivic double zeta values of odd weight, Manuscripta Mathematica 166 (2021), 19–36.

    Article  MathSciNet  Google Scholar 

  19. D. Ma, Period polynomial relations between formal double zeta values of odd weight, Mathematische Annalen 365 (2016), 345–362.

    Article  MathSciNet  Google Scholar 

  20. D. Ma, Connections between double zeta values relative to μN, Hecke operators Tn, and newforms of level Γ0(N) for N = 2, 3, https://arxiv.org/abs/1511.06102.

  21. D. Ma and K. Tasaka, Relationships between multiple zeta values of depths 2 and 3 and period polynomials, Israel Journal of Mathematics 242 (2021), 359–400.

    Article  MathSciNet  Google Scholar 

  22. V. Paşol and A. A. Popa, Modular forms and period polynomials, Proceedings of the London Mathematical Society 107 (2013), 713–743.

    Article  MathSciNet  Google Scholar 

  23. V. Paşol and A. A. Popa, On the Petersson scalar product of arbitrary modular forms, Proceedings of the American Mathematical Society 142 (2014), 753–760.

    Article  MathSciNet  Google Scholar 

  24. O. Schlotterer and S. Stieberger, Motivic multiple zeta values and superstring amplitudes, Journal of Physics. A 46 (2013), Article no. 475401.

  25. L. Schneps, On the Poisson bracket on the free Lie algebra in two generators, Journal of Lie Theory 16 (2006), 19–37.

    MathSciNet  Google Scholar 

  26. K. Tasaka, Hecke eigenform and double Eisenstein series, Proceedings of the American Mathematical Society 148 (2020), 53–58.

    Article  MathSciNet  Google Scholar 

  27. D. Zagier, Evaluation of the multiple zeta values ζ(2,…, 2, 3, 2,…, 2), Annals of Mathematics 175 (2012), 977–1000.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers, JP18J00982 and JP18K13392. The author would like to thank Koji Tasaka and Nobuo Sato for useful comments on the draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Hirose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirose, M. Modular phenomena for regularized double zeta values. Isr. J. Math. (2023). https://doi.org/10.1007/s11856-023-2587-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11856-023-2587-4

Navigation