Skip to main content
Log in

Effective Hilbert’s irreducibility theorem for global fields

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove an effective form of Hilbert’s irreducibility theorem for polynomials over a global field K. More precisely, we give effective bounds for the number of specializations \(t \in {{\cal O}_K}\) that do not preserve the irreducibility or the Galois group of a given irreducible polynomial F(T, Y) ∈ K[T, Y]. The bounds are explicit in the height and degree of the polynomial F(T, Y), and are optimal in terms of the size of the parameter \(t \in {{\cal O}_K}\). Our proofs deal with the function field and number field cases in a unified way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA–London–Don Mills, ON, 1969.

    Google Scholar 

  2. L. Bary-Soroker and A. Entin, Explicit Hilbert’s irreducibility theorem in function fields, in Abelian Varieties and Number Theory, Contemporary Mathematics, Vol. 767, American Mathematical Society, Providence, RI, 2021, pp. 125–134.

    Chapter  Google Scholar 

  3. E. Bombieri and W. Gubler, Heights in Diophantine Geometry, New Mathematical Monographs, Vol. 4, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  4. E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke Mathematical Journal 59 (1989), 337–357.

    Article  MathSciNet  Google Scholar 

  5. S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes in Mathematics, Vol. 2105, Springer, Cham, 2014.

    Google Scholar 

  6. T. D. Browning and D. R. Heath-Brown, Plane curves in boxes and equal sums of two powers, Mathematische Zeitshcrift 251 (2005), 233–247.

    Article  MathSciNet  Google Scholar 

  7. T. D. Browning, D. R. Heath-Brown and P. Salberger, Counting rational points on algebraic varieties, Duke Mathematical Journal 132 (2006), 545–578.

    Article  MathSciNet  Google Scholar 

  8. A. Castillo and R. Dietmann, On Hilbert’s irreducibility theorem, Acta Arithmetica 180 (2017), 1–14.

    Article  MathSciNet  Google Scholar 

  9. W. Castryck, R. Cluckers, P. Dittmann and K. H. Nguyen, The dimension growth conjecture, polynomial in the degree and without logarithmic factors, Algebra & Number Theory 14 (2020), 2261–2294.

    Article  MathSciNet  Google Scholar 

  10. S. D. Cohen, The distribution of Galois groups and Hilbert’s irreducibility theorem, Proceedings of the London Mathematical Society 43 (1981), 227–250.

    Article  MathSciNet  Google Scholar 

  11. P. Dèbes and Y. Walkowiak, Bounds for Hilbert’s irreducibility theorem, Pure and Applied Mathematics Quarterly 4 (2008), 1059–1083.

    Article  MathSciNet  Google Scholar 

  12. D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, Vol. 150, Springer, New York, 1995.

    Google Scholar 

  13. D. R. Heath-Brown, The density of rational points on curves and surfaces, Annals of Mathematics 155 (2002), 553–595.

    Article  MathSciNet  Google Scholar 

  14. D. Hilbert, Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten, Journal für die Reine und Angewandte Mathematik 110 (1892), 104–129.

    Article  MathSciNet  Google Scholar 

  15. S. Lang, Algebra, Graduate Texts in Mathematics, Vol. 211, Springer, New York, 2002.

    Google Scholar 

  16. M. W. Liebeck, L. Pyber and A. Shalev, On a conjecture of G. E. Wall, Journal of Algebra 317 (2007), 184–197.

    Article  MathSciNet  Google Scholar 

  17. J. Milne, Fields and Galois Theory, Kea Books, Ann Arbor, MI, 2022.

    Google Scholar 

  18. F. Motte, Hilbert irrecucibility, the Malle conjecture and the Grunwald problem, Annales de l’Institute Fourier 73 (2023), 2099–2134.

    Article  MathSciNet  Google Scholar 

  19. M. Paredes and R. Sasyk, Uniform bounds for the number of rational points on varieties over global fields, Algebra & Number Theory 16 (2022), 1941–2000.

    Article  MathSciNet  Google Scholar 

  20. P. Salberger, Counting rational points on projective varieties, Proceedings of the London Mathematical Society 126 (2023), 1092–1133.

    Article  MathSciNet  Google Scholar 

  21. A. Schinzel and U. Zannier, The least admissible value of the parameter in Hilbert’s irreducibility theorem, Acta Arithmetica 69 (1995), 293–302.

    Article  MathSciNet  Google Scholar 

  22. J. P. Serre, Lectures on the Mordell–Weil theorem, Aspects of Mathematics, Vol. E15, Friedr. Vieweg & Sohn, Braunschweig, 1989.

    Book  Google Scholar 

  23. F. Vermeulen, Points of bounded height on curves and the dimension growth conjecture over \({\mathbb{F}_q}[t]\), Bulletin of the London Mathematical Society 54 (2022), 635–654.

    Article  MathSciNet  Google Scholar 

  24. Y. Walkowiak, Théorème d’irréductibilité de Hilbert effectif, Acta Arithmetica 116 (2005), 343–362.

    Article  MathSciNet  Google Scholar 

  25. M. N. Walsh, Bounded rational points on curves, International Mathematics Research Notices 2015 (2015), 5644–5658.

    Article  MathSciNet  Google Scholar 

  26. D. Zywina, Hilbert’s irreducibility theorem and the larger sieve, https://arxiv.org/abs/1011.6465.

Download references

Acknowledgments

M. Paredes was supported in part by a CONICET Postdoctoral Fellowship. R. Sasyk was supported in part through the grant PICT 2017-0883. We thank the anonymous referee for the careful reading of the manuscript and their many suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Paredes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paredes, M., Sasyk, R. Effective Hilbert’s irreducibility theorem for global fields. Isr. J. Math. (2023). https://doi.org/10.1007/s11856-023-2604-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11856-023-2604-7

Navigation