Skip to main content
Log in

A remark on discrete Brunn–Minkowski type inequalities via transportation of measure

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We give an alternative proof for discrete Brunn–Minkowski type inequalities, recently obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger weighted versions of these inequalities. Our approach generalizes ideas of Gozlan, Roberto, Samson and Tetali from the theory of measure transportation and provides new displacement convexity of entropy type inequalities on the n-dimensional integer lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ahlswede and D. E. Daykin, An inequality for the weights of two families of sets, their unions and intersections, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 43 (1978), 183–185.

    Article  MathSciNet  Google Scholar 

  2. M. Alexander, M. Henk and A. Zvavitch, A discrete version of Koldobsky’s slicing inequality, Israel Journal of Mathematics 222 (2017), 261–278.

    Article  MathSciNet  Google Scholar 

  3. S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis. Part I, Mathematical Surveys and Monographs, Vol. 202, American Mathematical Society, Providence, RI, 2015.

    Book  Google Scholar 

  4. D. Cordero-Erausquin and B. Maurey, Some extensions of the Prékopa–Leindler inequality using Borell’s stochastic approach, Studia Mathematica 238 (2017), 201–233.

    Article  MathSciNet  Google Scholar 

  5. A. Freyer and M. Henk, Bounds on the lattice point enumerator via slices and projections, Discrete & Computational Geometry 67 (2022), 895–918.

    Article  MathSciNet  Google Scholar 

  6. R. J. Gardner and P. Gronchi, A Brunn–Minkowski inequality for the integer lattice, Transactions of the American Mathematical Society 353 (2001), 3995–4024.

    Article  MathSciNet  Google Scholar 

  7. N. Gozlan, C. Roberto, P.-M. Samson and P. Tetali, Displacement convexity of entropy and related inequalities on graphs, Probability Theory and Related Fields 160 (2014), 47–94.

    Article  MathSciNet  Google Scholar 

  8. N. Gozlan, C. Roberto, P.-M. Samson and P. Tetali, Transport proofs of some discrete variants of the Prékopa-Leindler inequality, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V 22 (2021), 1207–1232.

    MathSciNet  Google Scholar 

  9. B. Green, D. Matolcsi, I. Ruzsa, G. Shakan and D. Zhelezov, A Weighted Prékopa-Leindler inequality and sumsets with quasicubes, in Analysis at Large, Springer, Cham, 2022, pp. 125–129.

    Chapter  Google Scholar 

  10. D. Halikias, B. Klartag and B. A. Slomka, Discrete variants of Brunn–Minkowski type inequalities, Annales de la Faculté des Sciences de Toulouse. Mathematiques 30 (2021), 267–279.

    MathSciNet  Google Scholar 

  11. M. A. Hernéndez Cifre, D. Iglesias and J. Yepes Nicolás, On a discrete Brunn–Minkowski type inequality, SIAM Journal on Discrete Mathematics 32 (2018), 1840–1856.

    Article  MathSciNet  Google Scholar 

  12. M. A. HernéndezCifre, E. Lucas and J. Yepes Nicolás, On discrete Lp Brunn–Minkowski type inequalities, Revista de la Real Academia de Ciencias Exactas, Ffsicas y Naturales. Serie A. Matematicas. 116 (2022), Article no. 164.

  13. D. Iglesias, J. Yepes Nicolás and A. Zvavitch, Brunn–Minkowski type inequalities for the lattice point enumerator, Advances in Mathematics 370 (2020), Article no. 107193.

  14. B. Klartag and J. Lehec, Poisson processes and a log-concave Bernstein theorem, Studia Mathematica 247 (2019), 85–107.

    Article  MathSciNet  Google Scholar 

  15. A. Marsiglietti and J. Melbourne, Geometric and functional inequalities for log-concave probability sequences, Discrete & Computational Geometry, (2023), https://doi.org/10.1007/s00454-023-00528-7.

  16. D. Matolcsi, I. Z. Ruzsa, G. Shakan and D. Zhelezov, An analytic approach to cardinalities of sumsets, Combinatorica 42 (2022), 203–236.

    Article  MathSciNet  Google Scholar 

  17. J. Melbourne and T. Tkocz, Reversal of Rényi entropy inequalities under log-concavity, IEEE Transactions on Information Theory 67 (2021), 45–51.

    Article  MathSciNet  Google Scholar 

  18. Y. Ollivier and C. Villani, A Curved Brunn–Minkowski inequality on the discrete hypercube, or: What Is the Ricci curvature of the discrete hypercube?, SIAM Journal on Discrete Mathematics 26 (2012), 983–996.

    Article  MathSciNet  Google Scholar 

  19. I. Z. Ruzsa, Sets of sums and commutative graphs, Studia Scientiarum Mathematicarum Hungarica. 30 (1995), 127–148.

    MathSciNet  Google Scholar 

  20. I. Z. Ruzsa, Sum of sets in several dimensions, Combinatorica 14 (1994), 485–490.

    Article  MathSciNet  Google Scholar 

  21. D. Ryabogin, V. Yaskin and N. Zhang, Unique determination of convex lattice sets, Discrete & Computational Geometry 57 (2017), 582–589.

    Article  MathSciNet  Google Scholar 

  22. T. Tao and V. H. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, Vol. 105, Cambridge University Press, Cambridge, 2010.

    Google Scholar 

  23. C. Villani, Optimal Transport: Old and New, Grundlehren der mathematischen Wissenschaften, Vol. 338, Springer, Berlin, 2009.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Bo’az Klartag for fruitful conversions and for his advice and comments. I would like to thank Shiri Artstein and the anonymous referee for their useful remarks and suggestions. I would also like to thank the anonymous referee of the paper [10] for suggesting to pursue this direction of research. Supported by ISF grant 784/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz A. Slomka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slomka, B.A. A remark on discrete Brunn–Minkowski type inequalities via transportation of measure. Isr. J. Math. (2023). https://doi.org/10.1007/s11856-023-2596-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11856-023-2596-3

Navigation