Skip to main content
Log in

Contributions to the ergodic theory of hyperbolic flows: unique ergodicity for quasi-invariant measures and equilibrium states for the time-one map

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the horocyclic flow corresponding to a (topologically mixing) Anosov flow or diffeomorphism, and establish the uniqueness of transverse quasi-invariant measures with Hölder Jacobians. In the same setting, we give a precise characterization of the equilibrium states of the hyperbolic system, showing that existence of a family of Radon measures on the horocyclic foliation such that any probability (invariant or not) having conditionals given by this family, necessarily is the unique equilibrium state of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Babillot and F. Ledrappier, Geodesic paths and horocycle flow on abelian covers, in Lie Groups and Ergodic Theory (Mumbai, 1996), Tata Institute of Fundamental Research Studies in Mathematics, Vol. 14, Tata Institute of Fundamental Research, Bombay, 1998, pp. 1–34.

    Google Scholar 

  2. R. Bowen, Symbolic dynamics for hyperbolic flows, American Journal of Mathematics 95 (1973), 429–460.

    Article  MathSciNet  Google Scholar 

  3. R. Bowen, Some systems with unique equilibrium states, Mathematical Systems Theory 8 (1974), 193–202.

    Article  MathSciNet  Google Scholar 

  4. R. Bowen and B. Marcus, Unique ergodicity for horocycle foliations, Israel Journal of Mathematics 26 (1977), 43–67.

    Article  MathSciNet  Google Scholar 

  5. P. D. Carrasco and F. Rodriguez-Hertz, Equilibrium states for center isometries, Journal of the Institute of Mathematics of Jussieu, (2023) https://doi.org/10.1017/S147474802300018X.

  6. R. Douady and J. C. Yoccoz, Nombre de rotation des difféomorphismes du cercle et mesures automorphes, Regular and Chaotic Dynamics 4 (1999), 19–38.

    Article  MathSciNet  Google Scholar 

  7. T. Fisher and B. Hasselblatt, Hyperbolic Flows, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Berlin, 2019.

    Book  Google Scholar 

  8. H. Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics, Lecture Notes in Mathematics, Vol. 318, Springer, Berlin–New York, 1973, pp. 95–115.

    Chapter  Google Scholar 

  9. F. Ledrappier and J. M. Strelcyn, A proof of the estimation from below in Pesin’s entropy formula, Ergodic Theory and Dynamical Systems 2 (1982), 203–219.

    Article  MathSciNet  Google Scholar 

  10. B. Marcus, Unique ergodicity of the horocycle flow: Variable negative curvature case, Israel Journal of Mathematics 21 (1975), 133–144.

    Article  MathSciNet  Google Scholar 

  11. S. J. Patterson, The limit set of a Fuchsian group, Acta Mathematica 136 (1976), 241–273.

    Article  MathSciNet  Google Scholar 

  12. F. Paulin, M. Pollicott and B. Schapira, Equilibrium states in negative curvature, Astérisque 373 (2015).

  13. K. Petersen and K. Schmidt, Symmetric Gibbs measure, Transactions of the American Mathematical Society 349 (1997), 2775–2811.

    Article  MathSciNet  Google Scholar 

  14. J. Plante, Anosov flows, American Journal of Mathematics 94 (1972), 729–754.

    Article  MathSciNet  Google Scholar 

  15. J. F. Quint, An overview of Patterson–Sullivan theory, https://imag.umontpellier.fr/-quint/Publications/courszurich.pdf.

  16. M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Mathematical Journal 63 (1991), 235–280.

    Article  MathSciNet  Google Scholar 

  17. V. Rohlin, On the fundamental ideas of measure theory, American Mathematical Society Translations 1952 (1962).

  18. D. Ruelle, A measure associated with Axiom-A attractors, American Journal of Mathematics 98 (1976), 619–654.

    Article  MathSciNet  Google Scholar 

  19. B. Schapira, Propriétés ergodiques du flot horocyclique d’une surface hyperbolique géométriquement finie, in Séminaire de théorie spectrale et géométrie. Vol. 21. Anée 2002–2003, Université de Grenoble I, Institut Fourier, Saint-Martin-d’Hères, 147–163.

  20. B. Schapira, On quasi-invariant transverse measures for the horospherical foliation of a negatively curved manifold, Ergodic Theory and Dynamical Systems 24 (2004), 227–255.

    Article  MathSciNet  Google Scholar 

  21. C. Series, The Poincaré flow of a foliation, American Journal of Mathematics 102 (1980), 93–128.

    Article  MathSciNet  Google Scholar 

  22. Ya. Sinai, Markov partitions and C-diffeomorphisms, Functional Analysis and Its Applications 2 (1968), 61–82.

    Article  MathSciNet  Google Scholar 

  23. M. Urbanski F. Przytycki, Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series, Vol. 371, Cambridge University Press, Cambridge, 2010.

    Google Scholar 

  24. P. Walters, A variational principle for the pressure of continuous transformations, American Journal of Mathematics 97 (1975), 937–971.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Barbara Schapira for bringing to our attention the references [1, 20, 19, 12]. We also thank the referee for her/his careful reading, and for pointing out some mistakes and omissions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Rodriguez-Hertz.

Additional information

Partially supported by FAPEMIG Universal APQ-02160-21.

Partially supported by NSF grant DMS-1900778.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrasco, P.D., Rodriguez-Hertz, F. Contributions to the ergodic theory of hyperbolic flows: unique ergodicity for quasi-invariant measures and equilibrium states for the time-one map. Isr. J. Math. (2023). https://doi.org/10.1007/s11856-023-2588-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11856-023-2588-3

Navigation