Skip to main content
Log in

Catalytic Effect of RTO3 Perovskites on Hydrogen Storage and Hydrolysis Properties of Magnesium Hydride

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

A Correction to this article was published on 01 November 2023

This article has been updated

The method of reactive ball milling was used to synthesize MgH2-based composites adding nanoparticles of complex oxides RTO3 (R-rare earth and T-transition metals) as catalysts and graphite. All composites contain 5 wt.% of complex oxides Dy0.5Nd0.5FeO3 and TbFe0.5Cr0.5O3 synthesized by the sol-gel method, and some of them additionally contain 3 wt.% of graphite. The oxides have an orthorhombic perovskite structure (GdFeO3 type) and are characterized by an average particle size of 80–300 nm. The effect of perovskites on the hydrogenation of magnesium during the milling process and the improvement of hydrogen sorption-desorption kinetics is demonstrated. The Mg–Dy0.5Nd0.5FeO3 and Mg–TbFe0.5Cr0.5O3 composites absorbed 6.7 and 6.2 wt.% of hydrogen, respectively. X-ray powder diffraction after ball milling did not reveal any new compounds, except magnesium hydride. Thermal desorption from these composites occurs in two stages at temperatures above 300°C. The activation energy (Ea) of hydrogen desorption was determined by the Kissinger method. For the composite with TbFe0.5Cr0.5O3, Ea is 123 kJ/mol, and for the composite with Dy0.5Nd0.5FeO3 Ea = 147 kJ/mol. These composites were also tested as materials for hydrogen generation by hydrolysis in pure water and MgCl2 water solutions. In pure water, the hydrogen yield during hydrolysis ranged from 320 to 350 ml per gram. The conversion degree was significantly improved by the addition of MgCl2. It reached 90% (~1400 ml/g) after 30 min of hydrolysis for the MgH2–nano-TbFe0.5Cr0.5O3. These characteristics show that the synthesized MgH2–nano-RTO3 composites can be used in hydrogen generation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Change history

References

  1. V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, J.R. Ares, M. Baricco, N. Bourgeois, C.E. Buckley, J.M. Bellosta von Colbe, J.-C. Crivello, F. Cuevas, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, B.C. Hauback, T.D. Humphries, I. Jacob, T.R. Jensen, P.E. de Jongh, J.-M. Joubert, M.A. Kuzovnikov, M. Latroche, M. Paskevicius, L. Pasquini, L. Popilevsky, V.M. Skripnyuk, E. Rabkin, M.V. Sofianos, A. Stuart, G. Walker, H. Wang, C.J. Webb, and M. Zhu, “Magnesium based materials for hydrogen-based energy storage: Past, present and future,” Int. J. Hydrogen Energy, 44, 7809–7859 (2019).

    Article  CAS  Google Scholar 

  2. A. Baran and M. Polanski, “Magnesium-based materials for hydrogen storage – A scope review,” Materials, 13, 3993 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. I.Y. Zavalii, V.V. Berezovets, and R.V. Denys, “Nanocomposites based on magnesium for hydrogen storage: achievements and prospects (a survey),” Mater. Sci., 54, 611–626 (2019).

    Article  CAS  Google Scholar 

  4. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” Int. J. Hydrogen Energy, 32, 1121–1140 (2007).

    Article  CAS  Google Scholar 

  5. M.V. Lototsky, R.V. Denys, and V.A. Yartys, “Combustion-type hydrogenation of nanostructured Mgbased composites for hydrogen storage,” Int. J. Energy Research., 33, 1114–1125 (2009).

    Article  ADS  CAS  Google Scholar 

  6. G. Liang, J. Huot, S. Boily, A. Van Neste, and R. Schulz, “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe, and Ni) systems,” J. Alloys Compd., 292, 247–252 (1999).

    Article  CAS  Google Scholar 

  7. N. Hanada, T. Ichikawa, and H. Fujii, “Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling,” J. Phys. Chem. B, 109, 7188–7194 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. T. Sadhasivam, H.T. Kim, S. Jung, S.H. Roh, J.H. Park, and H.Y. Jung, “Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review,” Ren. Sust. Energy Rev., 72, 523–534 (2017).

    Article  CAS  Google Scholar 

  9. H. Gasan, O.N. Celik, N. Aydinbeyli, and Y.M. Yaman, “Effect of V, Nb, Ti and graphite additions on the hydrogen desorption temperature of magnesium hydride,” Int. J. Hydrogen Energy, 37, 1912–1918 (2012).

    Article  CAS  Google Scholar 

  10. W. Oelerich, T. Klassen, and R. Bormann, “Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials,” J. Alloys Compd., 315, 237–242 (2001).

    Article  CAS  Google Scholar 

  11. M.P. Pitt, M. Paskevicius, C.J. Webb, D.A. Sheppard, C.E. Buckley, A.E. MacGray, “The synthesis of nanoscopic Ti based alloys and their effects on the MgH2 system compared with the MgH2 + 0.01Nb2O5 benchmark,” Int. J. Hydrogen Energy, 37, 4227–4237 (2012).

    Article  CAS  Google Scholar 

  12. G. Barkhordarian, T. Klassen, and R. Bormann, “Effect of Nb2O5 content on hydrogen reaction kinetics of Mg,” J. Alloys Compd., 364, 242–246 (2004).

    Article  CAS  Google Scholar 

  13. M. Lototskyy, M.W. Davids, J.M. Sibanyoni, J. Goh, and B.G. Pollet, “Magnesium-based hydrogen storage nanomaterials prepared by high energy reactive ball milling in hydrogen at the presence of mixed titanium–iron oxide,” J. Alloys Compd., 645, S454–S459 (2015).

    Article  CAS  Google Scholar 

  14. N. Hanada, T. Ichikawa, S. Isobe, T. Nakagawa, K. Tokoyoda, T. Honma, H. Fujii, and Y. Kojima, “X-ray absorption spectroscopic study on valence state and local atomic structure of transition metal oxides doped in MgH2,” J. Phys. Chem. C, 113, 13450–13455 (2009).

    Article  CAS  Google Scholar 

  15. N. Patelli, M. Calizzi, A. Migliori, V. Morandi, and L. Pasquini, “Hydrogen desorption below 150°C in MgH2–TiH2 composite nanoparticles: Equilibrium and kinetic properties,” J. Phys. Chem. C, 121, 11166–11177 (2017).

    Article  CAS  Google Scholar 

  16. L. Zhang, X. Lu, L. Ji, N. Yan, Z. Sun, and X. Zhu, “Catalytic effect of facile synthesized TiH1.971 nanoparticles on the hydrogen storage properties of MgH2,” Nanomaterials, 9, 1370 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. V.V. Berezovets, R.V. Denys, I.Yu. Zavaliy, and Yu.V. Kosarchyn, “Effect of Ti-based nanosized additives on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy, 47, 7289–7298 (2022).

    Article  CAS  Google Scholar 

  18. J. Lu, Y.J. Choi, Z.Z. Fang, H.Y. Sohn, and E. Ronnebro, “Hydrogen storage properties of nanosized MgH2–0.1TiH2 prepared by ultrahigh-energy-high pressure milling,” J. Am. Chem. Soc., 131, 15843–15852 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. A. Patah, A. Takasaki, and J.S. Szmyd, “Influence of multiple oxides (Cr2O3/Nb2O5) addition on the sorption kinetics of MgH2,” Int. J. Hydrogen Energy, 4, 3032–3037 (2009).

    Article  Google Scholar 

  20. M. Polanski and J. Bystrzycki, “Comparative studies of the influence of different nano-sized metal oxides on the hydrogen sorption properties of magnesium hydride,” J. Alloys Compd., 486, 697–701 (2009).

    Article  CAS  Google Scholar 

  21. I.Yu. Zavaliy, V.V. Berezovets, I.V. Oshchapovsky, and T.M. Zasadnyy, M”g–TiN and Mg–ZrN nanocomposites as efficient materials for the accumulation and generation of hydrogen,” Mater. Sci., 57, 53–60 (2021).

    Article  CAS  Google Scholar 

  22. I.Yu. Zavaliy, V.V. Berezovets, R.V. Denys, O.P. Kononiuk, and V.A. Yartys, “Hydrogen absorptiondesorption properties and hydrolysis performance of MgH2-Zr3V3O0.6Hx and MgH2–Zr3V3O0.6Hx–C composites,” J. Energy Storage, 65, 1072445 (2023).

    Article  Google Scholar 

  23. V.V. Berezovets, O.P. Kononiuk, R.V. Denys, I.Yu. Zavaliy, “Synthesis and hydrogen-sorption properties of MgH2 composites with additions of TiFe intermetallics and its suboxide,” Physical-Chemical Mechanics of Materials, No. 2, 73–79 (2023).

    Google Scholar 

  24. M.S. Yahya and M. Ismail, “Catalytic effect of SrTiO3 on the hydrogen storage behavior of MgH2,” J. Energy Chemistry, 28, 46–53 (2019).

    Article  Google Scholar 

  25. W. Zhang, Y. Cheng, Y. Li, Z. Duan, and J. Liu, “Effect of LaFeO3 on hydrogenation/dehydrogenation properties of MgH2,” J. Rare Earths, 33, 334–338 (2015).

    Article  CAS  Google Scholar 

  26. N.A. Sazelee, N.H. Idris, M.F. Md Din, M.S. Yahya, N.A. Ali, and M. Ismail, “LaFeO3 synthesized by solid-state method for enhanced sorption properties of MgH2,” Results in Physics, 16, 102844 (2020).

  27. Ch. Wu, Y. Wang, Y. Liu, W. Ding, and Ch. Sun, “Enhancement of hydrogen storage properties by in situ formed LaH3 and Mg2NiH4 during milling MgH2 with porous LaNiO3,” Catalysis Today, 318, 113–118 (2018).

    Article  CAS  Google Scholar 

  28. D. Pukazhselvan, N. Nasani, T. Yang, D. Ramasamy, A. Shaula, and D.P. Fagg, “Chemically transformed additive phases in Mg2TiO4 and MgTiO3 loaded hydrogen storage system MgH2,” App. Surf. Sci., 472, 99–104 (2019).

    Article  ADS  CAS  Google Scholar 

  29. M. Hilman, A. Rahman, M.A. Shamsudin, A. Klimkowicz, S. Uematsu, and A. Takasaki, “Effects of KNbO3 catalyst on hydrogen sorption kinetics of MgH2,” Int. J. Hydrogen Energy, 44, 29196–29202 (2019).

    Article  Google Scholar 

  30. D. Pukazhselvan, N. Nasani, P. Correia, E. Carbo-Argibay, G. Otero-Irurueta, D.G. Stroppa, D.P. Fagg, “Evolution of reduced Ti containing phase(s) in MgH2/TiO2 system and its effect on the hydrogen storage behavior of MgH2,” J. Power Sources, 362, 174–183 (2017).

    Article  ADS  CAS  Google Scholar 

  31. N.N. Sulaiman, N. Juahir, N.S. Mustafa, F.A. Halim Yap, and M. Ismail, “Improved hydrogen storage properties of MgH2 catalyzed with K2NiF6,” J. Energy Chemistry, 25, 832–839 (2016).

  32. O. Pavlovska, I. Lutsyuk, A. Kondyr, Ya. Zhydachevskyy, Ya. Vakhula, A. Pieniazek, L. Vasylechko, “Synthesis and structure characterisation of micro- and nanocrystalline powders of Dy1–xRxFeO3 (R = La, Pr, Nd, Sm, Gd),” Acta Physica Polonica A, 133, 802–805 (2018).

    Article  ADS  CAS  Google Scholar 

  33. V.V. Berezovets, A.R. Kytsya, I.Yu. Zavaliy, and V.A. Yartys, “Kinetics and mechanism of hydrolysis of MgH2 in MgCl2 solutions,” Int. J. Hydrogen Energy, 46, Article 40278 (2021).

  34. V.A. Yartys, Yu.M. Solonin, and I.Yu. Zavaliy, Hydrogen Based Energy Storage: Status and Recent Developments, Kyiv (2021), 268 p.

  35. I.Y. Zavaliy, V.V. Berezovets, A.R. Kytsya, Yu.M. Solonin, and V.M. Kordan, “MgH2–ZrN composites for hydrogen generation by hydrolysis, Powder Metall. Met. Ceram., 60, 698–705 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Research Fund of Ukraine within the framework of grant No. 2020.02/0301 “Development of new functional materials for the needs of hydrogen energy.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Zavaliy.

Additional information

Published in Poroshkova Metallurgiya, Vol. 62, Nos. 5–6 (551), pp. 136–147, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononiuk, O.P., Zavaliy, I.Y., Berezovets, V.V. et al. Catalytic Effect of RTO3 Perovskites on Hydrogen Storage and Hydrolysis Properties of Magnesium Hydride. Powder Metall Met Ceram 62, 372–381 (2023). https://doi.org/10.1007/s11106-023-00400-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-023-00400-6

Keywords

Navigation