Skip to main content
Log in

Soliton solutions, lump solutions, mixed interactional solutions and their dynamical analysis of the \((2+1)\)-dimensional Calogero–Degasperis system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper focusses on a class of non-isospectral \((2+1)\)-dimensional Calogero–Degasperis system, which is a more general form of the classical nonlinear Schrödinger equation. Primarily, according to the plane wave seed solutions, we analyse the modulational instability of this system and obtain the formation mechanism of different localised waves. Secondly, based on the known Lax pair, we construct the generalised \((n, N-n)\)-fold Darboux transformation of this system. As an application of the resulting Darboux transformation, we not only show the interaction structures of the multisoliton solutions, but also analyse its long-time asymptotic behaviours and list the relevant physical properties. In order to explore the relationship with differential geometry, we also show the multisoliton surfaces. Subsequently, we give some higher-order lump solutions and analyse their large-parameter asymptotic states. We also give some mixed interactional solutions to better understand the interaction phenomena of different localised waves, whose propagation structures and characteristics are shown graphically. These results and phenomena may be helpful to understand some physical phenomena in nonlinear optics, fluids and Bose–Einstein condensates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T Tsuchida, J. Math. Phys. 52, 053503 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  2. A Biswas, J. Opt. 49, 580 (2020)

    Article  Google Scholar 

  3. D W Zuo and H X Jia, Optik 127, 11282 (2016)

    Article  ADS  Google Scholar 

  4. B H Wang, Y Y Wang, C Q Dai and Y X Chen, Alex. Eng. J. 59, 4699 (2020)

    Article  Google Scholar 

  5. Y Y Li, H X Jia and D W Zuo, Optik 241, 167019 (2021)

    Article  ADS  Google Scholar 

  6. Y Chen, X B Wang and B Han, Mod. Phys. Lett. B 34, 2050234 (2020)

    Article  ADS  Google Scholar 

  7. H Q Zhang, X L Liu and L L Wen, Z. Naturforsch. A 71, 95 (2016)

  8. W Q Peng, S F Tian, T T Zhang and Y Fang, Math. Method. Appl. Sci. 42, 6865 (2019)

    Article  ADS  Google Scholar 

  9. X B Wang, S F Tian and T T Zhang, Proc. Am. Math. Soc. 146, 3353 (2018)

    Article  Google Scholar 

  10. D W Zuo, H X Jia and D M Shan, Superlatt. Microstruct. 101, 522 (2017)

    Article  ADS  Google Scholar 

  11. M A Rahman, M F Hoque, and M S Khatun, Pramana – J. Phys. 88, 1 (2017)

  12. M Eghbali, B Farokhi and M Eslamifar, Pramana – J. Phys. 88, 1 (2017)

    Google Scholar 

  13. X Y Wen and Z Y Yan, Chaos 25, 123115 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. H T Wang, X Y Wen and D S Wang, Wave Motion 91, 102396 (2019)

    Article  MathSciNet  Google Scholar 

  15. A R Seadawy, S Ali and S T Rizvi, Chaos Solitons Fractals 161, 112374 (2022)

    Article  Google Scholar 

  16. Y H Liu, R Guo and X L Li, Appl. Math. Lett. 121, 107450 (2021)

    Article  ADS  Google Scholar 

  17. X Y Wen, Z Y Yan and B A Malomed, Chaos 26, 123110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. X Y Wen and Z Y Yan, J. Math. Phys. 59, 073511 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. L C Zhao and L M Ling, J. Opt. Soc. Am. B 33, 850 (2016)

    Article  ADS  Google Scholar 

  20. L M Ling and L C Zhao, Commun. Nonlinear Sci. Numer. Simul. 72, 449 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. X Zhang and L M Ling, Physica D 426, 132982 (2021)

    Article  Google Scholar 

  22. C L Yuan, X Y Wen, H T Wang and Y Q Liu, Chin. J. Phys. 64, 45 (2020)

    Article  Google Scholar 

  23. M L Qin, X Y Wen and C L Yuan, Chin. J. Phys. 77, 605 (2022)

    Article  Google Scholar 

  24. M L Qin, X Y Wen and C L Yuan, Commun. Theor. Phys. 73, 065003 (2021)

    Article  ADS  Google Scholar 

  25. W J Tang, Z N Hu and L M Ling, Commun. Theor. Phys. 73, 105001 (2021)

    Article  ADS  Google Scholar 

  26. C X Xu, T Xu, D X Meng, T L Zhang, L C An and L J Han, J. Math. Anal. Appl. 516, 126514 (2022)

    Article  Google Scholar 

  27. D Levi and A Sym, Phys. Lett. A 149, 381 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  28. A Sym, Lett. Nuovo Cimento 33, 394 (1982)

    Article  MathSciNet  Google Scholar 

  29. A Sym, Lett. Nuovo Cimento 36, 307 (1983)

    Article  MathSciNet  Google Scholar 

  30. C Rogers and W K Schief, Bäcklund and Darboux transformations: Geometry and modern applications in soliton theory (Cambridge University Press, England, 2002)

    Book  Google Scholar 

  31. M Gürses and S Tek, Nonlinear Anal. Theory Methods Appl. 95, 11 (2014)

    Article  Google Scholar 

  32. G Q Zhang, L M Ling and Z Y Yan, J. Nonlinear Sci. 31, 1 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 12071042) and Beijing Natural Science Foundation (Grant No. 1202006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, XQ., Wen, XY. & Lin, Z. Soliton solutions, lump solutions, mixed interactional solutions and their dynamical analysis of the \((2+1)\)-dimensional Calogero–Degasperis system. Pramana - J Phys 98, 1 (2024). https://doi.org/10.1007/s12043-023-02655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02655-5

Keywords

PACS

Navigation