Skip to main content
Log in

Determination of the Influence of the Oncoming Flow on the Vortex Zones at the Inlet to the Suction Sockets. Part 1. Flat Problem

  • ECOLOGY
  • Published:
Refractories and Industrial Ceramics Aims and scope

The present study discusses the construction of an algorithm for calculating slot suction sockets under conditions of an oncoming flow using discrete vortices. It also presents the effects of flow patterns at different ratios of the oncoming and suction airflow velocities. The dependence of the sizes of the vortex zones arising at the inlet to the suction sockets on the velocity of the oncoming flow, length, and angle of inclination of the socket is determined. Equations are obtained for the critical velocity of the oncoming flow, at which the flow separation mode for the vortex zone 1 changes from separation inside the socket to outside it. The results obtained can be used to design local suction systems profiled according to the outlines of vortex zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. I. E. Idelchik, Handbook of Hydraulic Resistance [in Russian], Mashinostroenie, Moscow (1992).

    Google Scholar 

  2. ASHRAE Duct Fitting Database, (n.d.). https://www.ashrae.org/technical-resources/bookstore/duct-fitting-database.

  3. R. Gao, K. Liu, A. Li, et al., “Biomimetic duct tee for reducing the local resistance of a ventilation and air-conditioning system,” Build. Environ., 129, 130 – 141 (2018). DOI: https://doi.org/10.1016/j.buildenv.2017.11.023.

    Article  Google Scholar 

  4. R. Gao, H. Zhang, A. Li, et al., “A novel low-resistance duct tee emulating a river course,” Build. Environ., 144, 295 – 304 (2018). DOI: https://doi.org/10.1016/j.buildenv.2018.08.034.

    Article  Google Scholar 

  5. R. Gao, K. Liu, A. Li, et al., “Study of the shape optimization of a tee guide vane in a ventilation and air-conditioning duct,” Build. Environ., 132, 345 – 356 (2018). DOI: https://doi.org/10.1016/j.buildenv.2018.02.006.

    Article  Google Scholar 

  6. R. Gao, H. Li, A. Li, et al., “Applicability study of a deflector in ventilation and air conditioning duct tees based on an analysis of energy dissipation,” J. Wind Eng. Ind. Aerodyn., 184, 256 – 264 (2019). DOI: https://doi.org/10.1016/jjweia.2018.11.025.

    Article  Google Scholar 

  7. M. C. E. Manuel, P. T. Lin, and M. Chang, “Optimal duct layout for HVAC using topology optimization,” Sci. Technol. Built Environ., 24, 212 – 219 (2018). DOI: https://doi.org/10.1080/23744731.2017.1346444.

    Article  Google Scholar 

  8. M. Zhou, H. Lian, O. Sigmund, and N. Aage, “Shape morphing and topology optimization of fluid channels by explicit boundary tracking,” Int. J. Numer. Methods Fluids, 88, 296 – 313 (2018). DOI: https://doi.org/10.1002/fld.4667.

    Article  Google Scholar 

  9. A. Gersborg-Hansen, O. Sigmund, and R. B. Haber, “Topology optimization of channel flow problems,” Struct. Multidiscip. Optim., 30, 181 – 192 (2005). DOI: https://doi.org/10.1007/s00158-004-0508-7.

    Article  Google Scholar 

  10. G. Demirel, E. Acar, K. Celebioglu, and S. Aradag, “CFD-driven surrogate-based multiobjective shape optimization of an elbow type draft tube,” Int. J. Hydrogen Energy, 42, 17601 – 17610 (2017). DOI: https://doi.org/10.1016/j.ijhydene.2017.03.082.

    Article  CAS  Google Scholar 

  11. A. Li, X. Chen, and L. Chen, “Numerical investigations on effects of seven drag reduction components in elbow and T-junction close-coupled pipes,” Build. Serv. Eng. Res. Technol., 36, 295 – 310 (2015). DOI: https://doi.org/10.1177/0143624414541453.

    Article  CAS  Google Scholar 

  12. A. Li, X. Chen, L. Chen, and R. Gao, “Study on local drag reduction effects of wedge-shaped components in elbow and T-junction close-coupled pipes,” Build. Simul., 7, 175 – 184

  13. (2014). DOI: https://doi.org/10.1007/s12273-013-0113-z.

  14. A. M. Ziganshin, I. S. Aleshchenko, M. G. Ziganshin, and I. R. Gimranov, Patent 2604264 Russian Federation, Connecting Shaped Element with Profiling Inserts, No. 2014137755/06; submitted 09/17/2014; published 12/10/2016, Bull. No. 34. https://patents.google.com/patent/RU2604264C2/ru?oq=2604264.

  15. 14. E. E. Solodova, “Aspects of numerical simulation of flows in Z-shaped outlets of ventilation and air conditioning systems of buildings and structures,” Izv. Kazansk. Gos. Arkhitekt.-Stroit. Univ., 55(1), 71 – 84 (2021).

    Google Scholar 

  16. 15. A. M. Ziganshin, E. E. Belyaeva, and V. A. Sokolov, “Decreasing pressure losses during profiling of a sharp bend and a bend with a niche,” Izv. Vyssh. Ucheb. Zav. Stroitel’stvo, 697(1), 108 – 116 (2017).

    Google Scholar 

  17. A. M. Ziganshin, L. N. Badykova, “Numerical simulation of the flow in a profiled vent tee fitting for confluence,” Izv. Vyssh. Ucheb. Zav. Stroitel’stvo, No. 6, 41 – 48 (2017).

  18. 17. A. M. Ziganshin, K. E. Batrova, G. A. Gimadieva, K. I. Logachev, and O. A. Averkova, “Improving the energy efficiency of ventilation systems by profiling shaped elements,” Stroit. Tekhnogen. Bezopasn., 67(15), 111 – 123 (2019).

    Google Scholar 

  19. 18. K. I. Logachev, A. M. Ziganshin, O. A. Averkova, and A. K. Logachev, “Asurvey of separated airflow patterns at inlet of circular exhaust hoods,” Energy Build., 173, 58 – 70 (2018). DOI: DOI: https://doi.org/10.1016/j.enbuild.2018.05.036.

    Article  Google Scholar 

  20. 19. K. I. Logachev, A. M. Ziganshin, and O. A. Averkova, “On the resistance of a round exhaust hood, shaped by outlines of the vortex zones occurring at its inlet,” Build. Environ., 151, 338 – 347 (2019). DOI: https://doi.org/10.1016/j.buildenv.2019.01.039.

    Article  Google Scholar 

  21. K. I. Logachev, A. M. Ziganshin, and O. A. Averkova, “A study of separated flows at inlets of flanged slotted hoods,” J. Build. Eng., 29, Article No. 101159 (2020). DOI: https://doi.org/10.1016/jjobe.2019.101159.

  22. A. M. Ziganshin, K. I. Logachev, “Minimizing local drag by shaping a flanged slotted hood along the boundaries of vortex zones occurring at inlet,” J. Build. Eng., 32, Article No. 101666 (2020). DOI: https://doi.org/10.1016/jjobe.2020.101666.

  23. A. Ziganshin, K. Logachev, and K. Batrova, “Reducing the drag of midpoint lateral orifices of exhaust air ducts by shaping them along vortex zone outlines,” Build. Environ., 188, Article No. 107491 (2021). DOI: https://doi.org/10.1016/j.buildenv.2020.107491.

  24. 23. K. I. Logachev, A.M. Ziganshin, and O. A. Averkova, “Simulations of dust dynamics around a cone hood in updraft conditions,” J. Occup. Environ. Hyg., 15, 715 – 731 (2018). DOI: https://doi.org/10.1080/15459624.2018.1492137.

    Article  CAS  Google Scholar 

  25. K. Logachev, A. Ziganshin, O. Kryukova, et al., “Improving dust capture efficiency with local exhaust hoods in manicure shops,” Build. Environ., 181, Article 107124 (2020). DOI: https://doi.org/10.1016/j.buildenv.2020.107124.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Logachev.

Additional information

Translated from Novye Ogneupory, No. 4, pp. 63 – 69, April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logacheva, A.K., Averkova, O.A., Ziganshin, A.M. et al. Determination of the Influence of the Oncoming Flow on the Vortex Zones at the Inlet to the Suction Sockets. Part 1. Flat Problem. Refract Ind Ceram 64, 221–228 (2023). https://doi.org/10.1007/s11148-023-00829-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-023-00829-7

Keywords

Navigation