Skip to main content
Log in

Tartrate Dehydrogenase in Bacillus Species: Deciphering Unique Catalytic Diversity Through Kinetic, Structural and Molecular Docking Analysis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Divergently evolved Tartrate dehydrogenase (TDH) exhibits multiple catalytic activities at a single active site; the enzyme from P. putida (pTDH) being structurally and biochemically well-characterized. Occurrence of TDH-associated ability to aerobically metabolize L-tartrate in Bacillus isolates and limited resemblance of ycsA-encoded protein sequences with pTDH rendered Bacillus TDH as an intriguing enzyme with possible catalytic diversity as well as evolutionary significance. The present study explores substrate interactions of TDHs from B. subtilis 168 (168bTDH) and B. licheniformis DSM-13 (429bTDH) through kinetic, structural and molecular docking-based analysis. Heterologously expressed bTDHs, purified from insoluble fractions of E. coli BL21(DE3) cells, could significantly catalyze L-tartrate and meso-tartrate as substrates in forward reaction. Unlike pTDH, bTDHs distinctly and more efficiently catalyzed the reverse reaction using dihydroxyfumarate substrate following sigmoidal kinetics; the ability being ~ 4 fold higher in 168bTDH. Their binding energies predicted from molecular docking, further substantiated the relative substrate specificities, while revealing major residues involved in protein-ligand interactions at active site. The kinetic analysis and homology modelling validated using Ramachandran Plot analysis predicted a dimeric nature for bTDH. Collectively, the results highlight unique catalytic potential of phylogenetically recent bTDHs, offering an important protein engineering target to mediate efficient enantioselective enzymatic biotransformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leveson-Gower RB, Mayer C, Roelfes G (2019) The importance of catalytic promiscuity for enzyme design and evolution. Nat Rev Chem 3:687–705

    Article  CAS  Google Scholar 

  2. Shimizu T, Yin L, Yoshida A et al (2017) Structure and function of an ancestral-type β-decarboxylating dehydrogenase from Thermococcus kodakarensis. Biochem J 474:105–122

    Article  CAS  PubMed  Google Scholar 

  3. Hurley JH, Dean AM (1994) Structure of 3–isopropylmalate dehydrogenase in complex with NAD+: ligand–induced loop closing and mechanism for cofactor specificity. Structure 2:1007–1016

    Article  CAS  PubMed  Google Scholar 

  4. Chen R, Jeong S-S (2000) Functional prediction: identification of protein orthologs and paralogs. Protein Sci 9:2344–2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Malik R, Viola RE (2010) Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions. Acta Crystallogr Sect D Biol Crystallogr 66:673–684

    Article  CAS  ADS  Google Scholar 

  6. Gonçalves S, Miller SP, Carrondo MA et al (2012) Induced Fit and the Catalytic mechanism of Isocitrate dehydrogenase. Biochemistry 51:7098–7115. https://doi.org/10.1021/bi300483w

    Article  CAS  PubMed  Google Scholar 

  7. Serfozo P, Tipton PA (1995) Substrate determinants of the course of tartrate dehydrogenase-catalyzed reactions. Biochemistry 34:7517–7524

    Article  CAS  PubMed  Google Scholar 

  8. Bolocan SN (2010) Stopped-flow spectrophotometric studies of the kinetics of interaction of dihydroxyfumaric acid with the dpph free radical. Chem J Mold 5:83–87

    Article  Google Scholar 

  9. Orubin DIP, Echt STSH, I ZHZEL, et al (2007) Endogenous formation of N ′ -Nitrosonornicotine in F344 rats in the Presence of. Some Antioxidants and Grape Seed Extract

  10. Hough L, Jones JKN (1951) Biosynthesis of the monosaccharides. Nature 167:180–183

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Li Z, Yan J, Sun J et al (2018) Production of value-added chemicals from glycerol using in vitro enzymatic cascades. Commun Chem 1:71

    Article  ADS  Google Scholar 

  12. Gmelch TJ, Sperl JM, Sieber V (2019) Optimization of a reduced enzymatic reaction cascade for the production of L-alanine. Sci Rep 9:11754. https://doi.org/10.1038/s41598-019-48151-y

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Tokuma F, Shintaro I, Hiroshi H et al (2012) Synthesis and interfacial properties of monoacyl glyceric acids as a new class of green surfactants. J Oleo Sci 61:343–348

    Article  Google Scholar 

  14. Chiellini E, Faggioni S, Solaro R (1990) Polyesters based on glyceric acid derivatives as potential biodegradable materials. J Bioact Compat Polym 5:16–30

    Article  CAS  Google Scholar 

  15. Park S, Suk K (2013) Oxaloacetate and malate production in engineered Escherichia coli by expression of codon-optimized phosphoenolpyruvate carboxylase2 gene from Dunaliella salina. 127–131. https://doi.org/10.1007/s00449-012-0759-4

  16. Kwon Y, Kwon O, Lee H, Kim P (2007) The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J Appl Microbiol 103:2340–2345

    Article  CAS  PubMed  Google Scholar 

  17. Millard CS, Chao Y-P, Liao JC, Donnelly MI (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol 62:1808–1810

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Turner NJ (2000) Applications of transketolases in organic synthesis Nicholas J Turn. 527–531

  19. Akita H, Nakashima N, Hoshino T (2016) Pyruvate production using engineered Escherichia coli. AMB Express 6:94. https://doi.org/10.1186/s13568-016-0259-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kohn LD, Jakoby WB (1968) Tartaric Acid Metabolism: III. The formation of Glyceric Acid. J Biol Chem 243:2465–2471

    Article  CAS  PubMed  Google Scholar 

  21. Crouzet P, Otten L (1995) Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis. J Bacteriol 177:6518–6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giffhorn F, Kuhn A (1983) Purification and characterization of a bifunctional l-(+)-tartrate dehydrogenase-d-(+)-malate dehydrogenase (decarboxylating) from Rhodopseudomonas sphaeroides Y. J Bacteriol 155:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patel D, Buch A (2019) Aerobic L-tartrate utilization by Bacillus isolates. J Pure Appl Microbiol

  24. Shahriar M, Haque MR, Kabir S et al (2011) Effect of proteinase-K on genomic DNA extraction from Gram-positive strains. Stamford J Pharm Sci 4:53–57

    Article  CAS  Google Scholar 

  25. Sambrook J Molecular cloning: a laboratory manual. Third edition. Cold Spring Harbor, N.Y. : Cold Spring Harbor Laboratory Press, [2001] ©2001

  26. Guan Y, Zhu Q, Huang D et al (2015) An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Nat Publ Gr 1–11. https://doi.org/10.1038/srep13370

  27. Yang J, Yan R, Roy A et al (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  30. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:1–9

    Article  Google Scholar 

  31. Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-Dimensional structure. Sci (80-) 253:164–170. https://doi.org/10.1126/science.1853201

    Article  CAS  ADS  Google Scholar 

  32. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. https://doi.org/10.1002/pro.5560020916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  ADS  Google Scholar 

  34. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Chem Biol Methods Protoc 243–250

  35. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  36. Kohn LD, Packman PM, Allen RH, Jakoby WB (1968) Tartaric Acid Metabolism. J Biol Chem 243:2479–2485. https://doi.org/10.1016/s0021-9258(18)93400-9

    Article  CAS  PubMed  Google Scholar 

  37. Morabbi Heravi K, Wenzel M, Altenbuchner J (2011) Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Microb Cell Fact 10:1–19

    Article  Google Scholar 

  38. Lulko AT, Buist G, Kok J, Kuipers OP (2007) Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Microb Physiol 12:82–95

    Article  CAS  Google Scholar 

  39. Vorobieva AA, Khan MS, Soumillion P (2014) Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway. J Biol Chem 289:29086–29096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Z, Yan J, Sun J et al Using in vitro enzymatic cascades. Commun Chem 1–8. https://doi.org/10.1038/s42004-018-0070-7

  41. McDonald AG, Tipton KF (2022) Parameter reliability and understanding enzyme function. Molecules 27. https://doi.org/10.3390/molecules27010263

  42. Yorkshire N (1987) Organic Acids by Fermentation, especially Citric Acid. 273–307

  43. Xuan J, Feng Y (2019) Enantiomeric Tartaric Acid Production using cis-epoxysuccinate hydrolase: history and perspectives. Molecules 24. https://doi.org/10.3390/molecules24050903

Download references

Acknowledgements

The authors are thankful to Dr. Darshan Patel, Charotar University of Science and Technology, Gujarat, India, for kind support with respect to experimental resources.

Funding

The work was supported by Science and Engineering Research Board, Department of Science & Technology, Government of India [Grant number: EMR/2016/003524].

Author information

Authors and Affiliations

Authors

Contributions

Manali Chandnani executed the experiments related to Bacillus licheniformis DSM-13 and in silico analysis, drafted and reviewed the manuscript; Disha Patel and Twinkle Patel executed the Bacillus subtilis 168 related experiments; Aditi Buch designed the experiments, drafted, reviewed and revised the manuscript.

Corresponding author

Correspondence to Aditi Buch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandnani, M., Patel, D., Patel, T. et al. Tartrate Dehydrogenase in Bacillus Species: Deciphering Unique Catalytic Diversity Through Kinetic, Structural and Molecular Docking Analysis. Protein J 43, 96–114 (2024). https://doi.org/10.1007/s10930-023-10170-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10170-0

Keywords

Navigation