Skip to main content
Log in

On Poincaré–Birkhoff–Witt basis of the quantum general linear superalgebra

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a detailed derivation of the commutation relations for the Poincaré–Birkhoff–Witt generators of the quantum superalgebra \(\mathrm U_q(\mathfrak{gl}_{M|N})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the terminology used for integrability objects, we refer the reader to [6], [8], [11].

  2. See Appendix A of [22] for a minimal necessary set of definitions and notation.

  3. We note that if we define an ordering of positive roots such that \(\alpha_{i j} \prec \alpha_{m n}\) if \((i, j) \prec (m, n)\), we obtain a normal ordering in the sense of [24], [25] (also see [26]).

References

  1. V. G. Drinfel’d, “Hopf algebras and the quantum Yang–Baxter equation,” Sov. Math. Dokl., 32, 1060–1064 (1985).

    Google Scholar 

  2. V. G. Drinfeld, “Quantum groups,” in: Proceedings of the International Congress of Mathematicians (Berkeley, CA, August 3–11, 1986, A. E. Gleason, ed.), AMS, Providence, RI (1987), pp. 798–820.

    Google Scholar 

  3. M. Jimbo, “A \(q\)-difference analogue of \(\mathrm U(\mathfrak g)\) and the Yang–Baxter equation,” Lett. Math. Phys., 10, 63–69 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  4. V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, “Integrable structure of conformal field theory III. The Yang–Baxter relation,” Commun. Math. Phys., 200, 297–324 (1999); arXiv: hep-th/9805008.

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Boos, F. Gohmann, A. Klümper, Kh. Nirov, and A. V. Razumov, “Universal integrability objects,” Theoret. and Math. Phys., 174, 21–39 (2013); arXiv: 1205.4399.

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, and A. V. Razumov, “Universal \({R}\)-matrix and functional relations,” Rev. Math. Phys., 26, 1430005, 66 pp. (2014); arXiv: 1205.1631.

    Article  MathSciNet  Google Scholar 

  7. Kh. S. Nirov and A. V. Razumov, “Quantum groups and functional relations for lower rank,” J. Geom. Phys., 112, 1–28 (2017); arXiv: 1412.7342.

    Article  ADS  MathSciNet  Google Scholar 

  8. A. V. Razumov, “\(\ell\)-weights and factorization of transfer operators,” Theoret. and Math. Phys., 208, 1116–1143 (2021); arXiv: 2103.16200.

    Article  ADS  MathSciNet  Google Scholar 

  9. V. V. Bazhanov, A. N. Hibberd, and S. M. Khoroshkin, “Integrable structure of \(\mathcal W_3\) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory,” Nucl. Phys. B, 622, 475–574 (2002); arXiv: hep-th/0105177.

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, and A. V. Razumov, “Quantum groups and functional relations for higher rank,” J. Phys. A: Math. Theor., 47, 275201, 47 pp. (2014); arXiv: 1312.2484.

    Article  MathSciNet  Google Scholar 

  11. A. V. Razumov, “Quantum groups and functional relations for arbitrary rank,” Nucl. Phys. B, 971, 115517, 51 pp. (2021); arXiv: 2104.12603.

    Article  MathSciNet  Google Scholar 

  12. T. Kojima, “Baxter’s \(Q\)-operator for the \(W\)-algebra \(W_N\),” J. Phys. A: Math. Theor., 41, 355206, 16 pp. (2008); arXiv: 0803.3505.

    Article  MathSciNet  Google Scholar 

  13. Kh. S. Nirov and A. V. Razumov, “Quantum groups, Verma modules and \(q\)-oscillators: General linear case,” J. Phys. A: Math. Theor., 50, 305201, 19 pp. (2017); arXiv: 1610.02901.

    Article  MathSciNet  Google Scholar 

  14. H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, and A. V. Razumov, “Oscillator versus prefundamental representations,” J. Math. Phys., 57, 111702, 23 pp. (2016); arXiv: 1512.04446.

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, and A. V. Razumov, “Oscillator versus prefundamental representations II. Arbitrary higher ranks,” J. Math. Phys., 58, 093504, 23 pp. (2017); arXiv: 1701.02627.

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Yamane, “A Poincaré–Birkhoff–Witt theorem for quantized universal enveloping algebras of type \(A_N\),” Publ. Res. Inst. Math. Sci. Kyoto Univ., 25, 503–520 (1989).

    Article  Google Scholar 

  17. H. Yamane, “Quantized enveloping algebras associated with simple Lie superalgebras and their universal \(R\)-matrices,” Publ. Res. Inst. Math. Sci. Kyoto Univ., 30, 15–87 (1994).

    Article  MathSciNet  Google Scholar 

  18. V. V. Bazhanov and Z. Tsuboi, “Baxter’s \(\mathbf{Q}\)-operators for supersymmetric spin chains,” Nucl. Phys. B, 805, 451–516 (2008); arXiv: 0805.4274.

    Article  ADS  MathSciNet  Google Scholar 

  19. R. B. Zhang, “Finite dimensional irreducible representations of the quantum supergroup \(\mathrm U_q(gl(m/n))\),” J. Math. Phys., 34, 1236–1254 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  20. Z. Tsuboi, “Asymptotic representations and \(q\)-oscillator solutions of the graded Yang– Baxter equation related to Baxter \(Q\)-operators,” Nucl. Phys. B, 886, 1–30 (2014); arXiv: 1205.1471.

    Article  ADS  MathSciNet  Google Scholar 

  21. Z. Tsuboi, “A note on \(q\)-oscillator realizations of \(U_q(gl(M|N))\) for Baxter \(Q\)-operators,” Nucl. Phys. B, 947, 114747, 33 pp. (2019); arXiv: 1907.07868.

    Article  MathSciNet  Google Scholar 

  22. A. V. Razumov, “Khoroshkin–Tolstoy approach to quantum superalgebras,” Theoret. and Math. Phys., 215, 560–585 (2023); arXiv: 2210.12721.

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Jimbo, “A \(q\)-analogue of \(\mathrm U(\mathfrak{gl}(N + 1))\), Hecke algebra, the Yang–Baxter equation,” Lett. Math. Phys., 11, 247–252 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. N. Leznov and M. V. Saveliev, “A parametrization of compact groups,” Funct. Anal. Appl., 8, 347–348 (1974).

    Article  MathSciNet  Google Scholar 

  25. R. M. Asherova, Yu. F. Smirnov, and V. N. Tolstoy, “Description of a class of projection operators for semisimple complex Lie algebras,” Math. Notes, 26, 499–504 (1979).

    Article  Google Scholar 

  26. V. N. Tolstoy, “Extremal projections for contragredient Lie algebras and superalgebras of finite growth,” Russian Math. Surveys, 44, 257–258 (1989).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research (grant No. 20-51-12005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Razumov.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 613–629 https://doi.org/10.4213/tmf10444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumov, A.V. On Poincaré–Birkhoff–Witt basis of the quantum general linear superalgebra. Theor Math Phys 217, 1938–1953 (2023). https://doi.org/10.1134/S0040577923120115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923120115

Keywords

Navigation