Skip to main content
Log in

Higher spins in harmonic superspace

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We report on a recent progress in constructing off-shell \(4\)D, \(\mathcal{N}=2\) supersymmetric integer higher-superspin theory in terms of unconstrained harmonic analytic gauge superfields and their cubic interaction with matter hypermultiplets. For even superspins, a new equivalent representation of the hypermultiplet couplings in terms of an analytic \(\omega\) superfield is presented. It involves both cubic and quartic vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Also see [13], [14], where, in particular, the relevant component off- and on-shell Lagrangians are discussed in more detail.

  2. See [19] for a brief review.

  3. The expression for \(V^{--}\) can be obtained either by solving the flatness condition with the help of harmonic distributions (see book [17]) or by a direct calculation in the component formalism, starting from the WZ form of \(V^{++}\).

  4. The complete form of the WZ gauge can be found in [15].

  5. The spinor indices are raised and lowered in the standard way, with the help of the antisymmetric tensor \(\varepsilon_{\mu\nu}\), \({\varepsilon_{12} = -\varepsilon^{12} = 1}\), e.g., \(l_{(\nu}^{\;\;\;\mu)} = \varepsilon_{\nu\rho}l^{(\rho\mu)}\).

  6. Hereafter, all Lorentz indices of the same nature in the coefficients of differential operators are assumed to be properly symmetrized with those hidden in the multi-index \(M\).

  7. This can be easily observed in the simplest spin \(\mathbf{1}\) case.

  8. This change of variables is given in book [17].

  9. We use the standard definitions \((D^+)^2 := D^{+ \alpha}D^+_{\alpha}\), \((\bar{D}^+)^2 := \bar{D}^{+}_{\dot\alpha}\bar{D}^{+\dot\alpha}\), and \((D^+)^4 := \frac{1}{16}(D^+)^2(\bar{D}^+)^2\).

References

  1. M. A. Vasiliev, “Higher spin gauge theories in various dimensions,” Fortschr. Phys., 52, 702–717 (2004); arXiv: hep-th/0401177.

    Article  MathSciNet  Google Scholar 

  2. X. Bekaert, S. Cnockaert, C. Iazeolla, and M. A. Vasiliev, “Nonlinear higher spin theories in various dimensions,” in: Proceedings of the First Solvay Workshop on Higher Spin Gauge Theories (Brussels, Belgium, 12–14 May, 2004, R. Argurio, G. Barnich, G. Bonelli, and M. Grigoriev, eds.), International Solvay Institutes for Physics and Chemistry, Brussels (2006), pp. 132–197; arXiv: hep-th/0503128.

    Google Scholar 

  3. X. Bekaert, N. Boulanger, and P. Sundell, “How higher-spin gravity surpasses the spin-two barrier,” Rev. Mod. Phys., 84, 987–1009 (2012); arXiv: 1007.0435.

    Article  ADS  Google Scholar 

  4. A. Sagnotti, “Notes on strings and higher spins,” J. Phys. A: Math. Theor., 46, 214006, 29 pp. (2013); arXiv: 1112.4285.

    Article  ADS  MathSciNet  Google Scholar 

  5. V. E. Didenko and E. D. Skvortsov, “Elements of Vasiliev theory,” arXiv: 1401.2975.

  6. X. Bekaert, N. Boulanger, A. Campoleoni, M. Chodaroli, D. Francia, M. Grigoriev, E. Sezgin, and E. Skvortsov, “Snowmass white paper: Higher spin gravity and higher spin symmetry,” arXiv: 2205.01567.

  7. C. Fronsdal, “Massless fields with integer spin,” Phys. Rev. D, 18, 3624–3629 (1978).

    Article  ADS  Google Scholar 

  8. J. Fang and C. Fronsdal, “Massless fields with half-integral spin,” Phys. Rev. D, 18, 3630–3633 (1978).

    Article  ADS  Google Scholar 

  9. T. Curtright, “Massless field supermultiplets with arbitrary spins,” Phys. Lett. B, 85, 219–224 (1979).

    Article  ADS  Google Scholar 

  10. M. A. Vasiliev, “ ‘Gauge’ form of description of massless fields with arbitrary spin,” Soviet J. Nucl. Phys., 32, 439-443 (1980).

    MathSciNet  Google Scholar 

  11. S. M. Kuzenko, V. V. Postnikov, and A. G. Sibiryakov, “Massless gauge superfields of higher half integer superspins,” JETP Lett., 57, 534–538 (1993); S. M. Kuzenko, A. G. Sibiryakov, “Massless gauge superfields of higher integer superspins,” JETP Lett., 57, 539–542 (1993); S. M. Kuzenko and A. G. Sibiryakov, “Free massless higher superspin superfields in the anti-de Sitter superspace,” Phys. Atom. Nucl., 57, 1257–1267 (1994); arXiv: 1112.4612.

    ADS  Google Scholar 

  12. S. J. Gates, Jr., S. M. Kuzenko, and A. G. Sibiryakov, “Towards a unified theory of massless superfields of all superspins,” Phys. Lett. B, 394, 343–353 (1997), arXiv: hep-th/9611193; “\(\mathcal{N}=2\) supersymmetry of higher superspin massless theories,” Phys. Lett. B, 412, 59–68 (1997); arXiv: hep-th/9609141.

    Article  ADS  MathSciNet  Google Scholar 

  13. S. J. Gates, Jr. and K. Koutrolikos, “On \(4D\), \(N=1\) massless gauge superfields of arbitrary superhelicity,” JHEP, 06, 098, 47 pp. (2014); arXiv: 1310.7385.

    Article  ADS  Google Scholar 

  14. K. Koutrolikos, “Superspace formulation of massive half-integer superspin,” JHEP, 03, 254, 23 pp. (2021); arXiv: 2012.12225.

    Article  ADS  MathSciNet  Google Scholar 

  15. I. Buchbinder, E. Ivanov, and N. Zaigraev, “Unconstrained off-shell superfield formulation of \(4D\), \(\mathcal{N} = 2\) supersymmetric higher spins,” JHEP, 12, 016, 27 pp. (2021); arXiv: 2109.07639.

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Gal’perin, E. Ivanov, V. Ogievetskiĭ, and É. Sokatchev, “Harmonic superspace: key to \(N=2\) supersymmetry theories,” JETP Lett., 40, 912–916 (1984); “Unconstrained \(N=2\) matter, Yang–Mills and supergravity theories in harmonic superspace,” Class. Quantum Grav., 1, 469–498 (1984).

    ADS  Google Scholar 

  17. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace, Cambridge Univ. Press, Cambridge (2001).

    Book  Google Scholar 

  18. I. Buchbinder, E. Ivanov, and N. Zaigraev, “Off-shell cubic hypermultiplet couplings to \(\mathcal{N} = 2\) higher spin gauge superfields,” JHEP, 05, 104, 37 pp. (2022); arXiv: 2202.08196.

    Article  ADS  MathSciNet  Google Scholar 

  19. I. Buchbinder, E. Ivanov, and N. Zaigraev, “Unconstrained \(\mathcal{N} = 2\) higher-spin gauge superfields and their hypermultiplet couplings,” Phys. Part. Nucl. Lett., 20, 300–305 (2023); arXiv: 2211.09501.

    Article  Google Scholar 

  20. I. Buchbinder, E. Ivanov, and N. Zaigraev, “\(\mathcal{N} = 2\) higher spins: superfield equations of motion, the hypermultiplet supercurrents, and the component structure,” JHEP, 03, 036, 87 pp. (2023); arXiv: 2212.14114.

    Article  ADS  MathSciNet  Google Scholar 

  21. E. S. Fradkin and M. A. Vasiliev, “Minimal set of auxiliary fields and S-matrix for extended supergravity,” Lett. Nuovo Cimento, 25, 79–87 (1979); “Minimal set of auxiliary fields in SO\((2)\)-extended supergravity,” Phys. Lett. B, 85, 47–51 (1979).

    Article  Google Scholar 

  22. B. De Wit and J. W. van Holten, “Multiplets of linearized SO\((2)\) supergravity,” Nucl. Phys. B, 155, 530–542 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  23. B. De Wit, J. W. van Holten, and A. Van Proeyen, “Transformation rules of \(N=2\) supergravity multiplets,” Nucl. Phys. B, 167, 186–204 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. K. H. Bengtsson, I. Bengtsson, and L. Brink, “Cubic interaction terms for arbitrary spin,” Nucl. Phys. B, 227, 31–40 (1983); “Cubic interaction terms for arbitrary extended supermultiplets,” 41–49.

    Article  ADS  Google Scholar 

  25. E. S. Fradkin and R. R. Metsaev, “A cubic interaction of totally symmetric massless representations of the Lorentz group in arbitrary dimensions,” Class. Quantum Grav., 8, L89–L94 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  26. R. R. Metsaev, “Generating function for cubic interaction vertices of higher spin fields in any dimension,” Modern Phys. Lett. A, 8, 2413–2426 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Manvelyan, K. Mkrtchyan, and W. Rühl, “General trilinear interaction for arbitrary even higher spin gauge fields,” Nucl. Phys. B, 836, 204–221 (2010), arXiv: 1003.2877; “A generating function for the cubic interactions of higher spin fields,” Phys. Lett. B, 696, 410–415 (2011); arXiv: 1009.1054.

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Fotopoulos, N. Irges, A. C. Petkou, and M. Tsulaia, “Higher spin gauge fields interacting with scalars: The Lagrangian cubic vertex,” JHEP, 10, 021, 27 pp. (2007); arXiv: 0708.1399.

    Article  ADS  MathSciNet  Google Scholar 

  29. X. Bekaert, E. Joung, and J. Mourad, “On higher spin interactions with matter,” JHEP, 05, 126, 31 pp. (2009); arXiv: 0903.3338.

    Article  ADS  Google Scholar 

  30. M. V. Khabarov and Yu. M. Zinoviev, “Massless higher spin cubic vertices in flat four dimensional space,” JHEP, 08, 112, 21 pp. (2020); arXiv: 2005.09851.

    Article  ADS  MathSciNet  Google Scholar 

  31. M. V. Khabarov and Yu. M. Zinoviev, “Cubic interaction vertices for massless higher spin supermultiplets in \(d = 4\),” JHEP, 02, 167, 17 pp. (2021); arXiv: 2012.00482.

    Article  ADS  MathSciNet  Google Scholar 

  32. I. L. Buchbinder, S. J. Gates, Jr., and K. Koutrolikos, “Integer superspin supercurrents of matter supermultiplets,” JHEP, 05, 031, 18 pp. (2019); arXiv: 1811.12858; S. J. Gates, Jr. and K. Koutrolikos, “Progress on cubic interactions of arbitrary superspin supermultiplets via gauge invariant supercurrents,” Phys. Lett. B, 797, 134868, 6 pp. (2019); arXiv: 1904.13336.

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Galperin, N. A. Ky, and E. Sokatchev, “\(\mathcal{N}=2\) supergravity in superspace: solution to the constraints,” Class. Quantum Grav., 4, 1235–1253 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  34. S. M. Kuzenko and S. Theisen, “Correlation functions of conserved currents in \(\mathcal N=2\) superconformal theory,” Class. Quant. Grav., 17, 665–696 (2000); arXiv: hep-th/9907107.

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “\(N=2\) supergravity in superspace: Different versions and matter couplings,” Class. Quantum Grav., 4, 1255–1265 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  36. S. M. Kuzenko and E. S. N. Raptakis, “Extended superconformal higher-spin gauge theories in four dimensions,” JHEP, 12, 210, 26 pp. (2021); arXiv: 2104.10416.

    Article  ADS  MathSciNet  Google Scholar 

  37. E. I. Buchbinder, J. Hutomo, and S. M. Kuzenko, “Higher spin supercurrents in anti-de Sitter space,” JHEP, 09, 27, 51 pp. (2018); arXiv: 1805.08055.

    Article  ADS  MathSciNet  Google Scholar 

  38. S. M. Kuzenko, M. Ponds, and E. S. N. Raptakis, “Conformal interactions between matter and higher-spin (super)fields,” Fortsch. Phys., 71, 2200157, 31 pp. (2023); arXiv: 2208.07783.

    Article  ADS  MathSciNet  Google Scholar 

  39. S. M. Kuzenko and E. S. N. Raptakis, “On higher-spin \( \mathcal{N} = 2\) supercurrent multiplets,” JHEP, 05, 056, 20 pp. (2023); arXiv: 2301.09386.

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Ivanov, “\(\mathcal N=2\) supergravities in harmonic superspace,” arXiv: 2212.07925.

  41. E. I. Buchbinder, B. A. Ovrut, I. L. Buchbinder, E. A. Ivanov, and S. M. Kuzenko, “Low-energy effective action in \(N = 2\) supersymmetric field theories,” Phys. Part. Nucl., 32, 641–674 (2001).

    Google Scholar 

Download references

Acknowledgments

I thank the Organizers of the A. A. Slavnov Memorial Conference for inviting me to give this talk and kind hospitality at the Steklov Mathematical Institute in Moscow. I also thank my coauthors Ioseph Buchbinder and Nikita Zaigraev, on the joint papers with whom this talk is essentially based. I also thank the anonymous referee for the useful remarks aimed at making the exposition more complete and coherent.

Funding

This work was supported by the Russian Science Foundation (project No. 21-12-00129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivanov.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 515–532 https://doi.org/10.4213/tmf10527.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, E.A. Higher spins in harmonic superspace. Theor Math Phys 217, 1855–1869 (2023). https://doi.org/10.1134/S004057792312005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057792312005X

Keywords

Navigation